973 resultados para quasi-elastic neutron scattering
Resumo:
O objetivo deste trabalho foi a investigação das propriedades ópticas e estruturais de materiais isolantes contendo metais de transição do grupo do ferro como impurezas substitucionais. As técnicas usadas para o estudo de amostras MgGa2O4, MgGa2O4 + B- Ga2O3 e ZnGa2O4 dopadas com Cr3+e Fe3+ foram: fotoluminescência, excitação, difração de raios-X, espalhamento de nêutrons, método de Rietveld para o refinamento da estrutura e espectroscopia fotoacústica. Estas técnicas permitem a determinação da coordenação do sítio impureza, a atribuição das transições de energia, o cálculo dos parâmetros de energia e a determinação de propriedades cristalográficas. As amostras apresentam largas bandas de energia nas regiões do visível e do infravermelho. Estas transições indicam a relevância deste estudo pelo interesse tecnológico na obtenção de novos materais com bandas sintonizáveis. No primeiro capítulo apresentamos uma introdução à teoria de campo cristalino. No segundo capítulo apresentamos medidas de fotoluminescência e excitação do MgGa2O4 dopado com 0,1, 0,5, 1,0 e 5,0 % de Cr3+ a 77 K e temperatura ambiente. No terceiro capítulo usamos fotoluminescência, excitação, espalhamento de nêutrons, difração de raios X, fotoacústica e método de refino de Rietveld para analisar o sistema MgGa2O4 + B-Ga2O3 contendo 0,1, 0,5, 1,0 e 5,0 % de Cr3+. No quarto capítulo mostramos resultados de fotoacústica para o ZnGa2O4 dopado com 5% e 10% de Fe3+.
Resumo:
Neutron scattering experiments are fundamental to the study of magnetic order and related phenomena in a range of superconducting and magnetic materials. Traditional methods of crystal growth, however, do not yield single crystals of sufficient size for practical neutron scattering measurements. In this paper, we demonstrate the growth of relatively pure, large Y Ba 2Cu 3O 7 single crystals up to 30mm in diameter using a top seeded melt growth process. The characterization of the microstructural and magnetic properties of these crystals indicates that they contain <2% of impurity phases and, hence, exhibit only weak flux pinning behaviour. © 2012 IOP Publishing Ltd.
Resumo:
Computer simulation results are reported for a realistic polarizable potential model of water in the supercooled region. Three states, corresponding to the low density amorphous ice, high density amorphous ice, and very high density amorphous ice phases are chosen for the analyses. These states are located close to the liquid-liquid coexistence lines already shown to exist for the considered model. Thermodynamic and structural quantities are calculated, in order to characterize the properties of the three phases. The results point out the increasing relevance of the interstitial neighbors, which clearly appear in going from the low to the very high density amorphous phases. The interstitial neighbors are found to be, at the same time, also distant neighbors along the hydrogen bonded network of the molecules. The role of these interstitial neighbors has been discussed in connection with the interpretation of recent neutron scattering measurements. The structural properties of the systems are characterized by looking at the angular distribution of neighboring molecules, volume and face area distribution of the Voronoi polyhedra, and order parameters. The cumulative analysis of all the corresponding results confirms the assumption that a close similarity between the structural arrangement of molecules in the three explored amorphous phases and that of the ice polymorphs I(h), III, and VI exists.
Resumo:
The structural changes occurring in supercooled liquid water upon moving from one coexisting liquid phase to the other have been investigated by computer simulation using a polarizable interaction potential model. The obtained results favorably compare with recent neutron scattering data of high and low density water. In order to assess the physical origin of the observed structural changes, computer simulation of several ice polymorphs has also been carried out. Our results show that there is a strict analogy between the structure of various disordered (supercooled) and ordered (ice) phases of water, suggesting that the occurrence of several different phases of supercooled water is rooted in the same physical origin that is responsible for ice polymorphism.
Resumo:
A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with M A≈1/2MB. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
高分子凝胶广泛地存在于自然界以及日常生活中,按其形成作用力不同分为化学凝胶和物理凝胶两大类。由于高分子物理凝胶具有凝胶化的可逆性及其对环境条件强烈的响应性,因此,在近半个世纪的研究与应用中受到极大的关注。高分子溶液中的物理凝胶因其结构及形成机制复杂,在实验方面,除了散射技术及流变技术能够有效地揭示它的部分信息外,其它的实验手段很难用于这个领域的研究;在理论方面,化学凝胶的理论已经比较成熟,而物理凝胶的粘弹性质以及凝胶化是一个远离平衡态的松弛过程,除了一些特征的标度指数外,人们还没有得到适用于高分子物理凝胶的普适规律。当前,由于计算机模拟理论及模拟方法的发展,使得计算机模拟成为除了实验和理论研究方法之外的第三个重要的研究方法。但是,由于物理凝胶化行为的复杂性,用实验和理论获得的信息很难较好地描述凝胶化过程,而计算机模拟的高度透明性及反映信息的完整性,有助于理解这一复杂过程中所涉及的物理本质。因此,利用计算机模拟结合实验及理论方法深入研究高分子物理凝胶的形成机制、结构与性能关系已成为目前最有效的手段之一。 本论文主要运用Monte Carlo模拟方法,并结合小角中子散射(Small-Angle Neutron Scattering, SANS)和流变(Rheology)等实验手段从多个角度探讨了以下几类典型的高分子溶液物理凝胶化行为。 1. 温度对遥爪型三嵌段共聚物在选择性溶剂中的自组装及凝胶化行为影响的研究:采用二维简单方格子Monte Carlo模拟方法,结合逾渗(Percolation)理论,建立了溶胶-凝胶转变相图在统计热力学中的确定方法;甄别了具有特征构象的链,讨论了链及胶束的聚集,明晰了相互作用(体现为约化温度)、构象转变、聚集与凝胶化的一致的关联关系;提出了构象转变模型,进而明确了此体系的凝胶化过程,在微观尺度上表现为桥型链和环型链之间的竞争。 2. 模拟模型改进及其应用到持续长度对稀溶液中高分子链构象影响的研究:考虑到原始八位置键涨落模型效率低,实现复杂且不能应用到复杂的高分子体系,对该模型进行了改进,使其实现简单、效率高,并拓宽了该模型的应用范围。然后,以刚性对均聚物构象的影响为例,发现随着刚性增加,均聚物构象从球形椭球到棒状椭球的转变,并对比了自由连接链(Free Joint Chain, FJC)模型和蠕虫链(Wormlike Chain, WLC)模型在不同刚性范围内对高分子链末端距预测的偏差,首次给出了这两个经典模型的半定量的适用边界。 3. 溶剂尺寸对遥爪型三嵌段共聚物在选择性溶剂中的自组装及凝胶化行为影响的研究:用改进后的八位置键涨落Monte Carlo模型,研究了遥爪型三嵌段共聚物在选择性溶剂条件下的聚集和凝胶化对溶剂尺寸的依赖性,发现溶剂尺寸效应对凝胶化的作用是非单调的。由一个均聚物体系的对比模拟证明这种作用主要是由熵驱动的,并给出了中分子溶剂的半定量定义。在均聚物和嵌段共聚物溶液中,不同尺寸的溶剂分子可以使溶液由于高分子聚集不同而具有不同的微结构,并影响高分子链构象和溶液的性质。从多个角度研究了三嵌段共聚物在不同尺寸溶剂的溶液中所遵循的三种不同的凝胶化机理。 4. 聚氧化乙烯-氧化丙稀-氧化乙烯三嵌段共聚物(poly(ethylene oxide)-poly (propylene oxide)-poly-(ethylene oxide), PEO-PPO-PEO)重水溶液凝胶化的小角中子散射(SANS)和Monte Carlo研究:结合Pluronic F127(EO65PO99EO65)/D2O三嵌段共聚物溶液的特征,对照SANS数据,用改进后的八位置键涨落模型成功地从模拟中获得了F127/D2O的溶胶-凝胶转变相图。详细地考察了体系的微观结构,提出此类高分子溶液中形成的物理凝胶包含高分子逾渗网络的生成,以及被束缚溶剂(Bound Solvent)必须超过离散组分体系逾渗的临界体积分数的机理。着重研究了一定浓度的F127水溶液随温度升高引起的溶胶-凝胶转变以及凝胶-溶胶转变的Reentrant相行为,发现体系在低温区域的溶胶-凝胶转变遵循相同的机理,而在中等温度和较高温度以及不同浓度区域中的凝胶-溶胶转变遵循不同的机理。 5. 极性基团饱和度和溶剂条件对两亲性聚合物在溶液中的聚集行为和凝胶化影响的研究:用改进后的八位置键涨落模型,针对两亲性聚合物在不同溶剂条件的溶液建立了粗粒化模型,以两亲性聚合物中极性基团的饱和度,溶剂条件和高分子浓度为变量,考察了其对链构象、聚集及其凝胶化的影响。 6. 多糖水溶液凝胶化的流变和小角中子散射研究:用流变和SANS考察了两个多糖水溶液中物理凝胶化过程,针对由氢键主导的水基凝胶体系的典型特征进行了讨论,从分子链构象,聚集体结构及其关联以及流变特征等方面对聚强电解质角叉胶(Carrageenan)水溶液和聚弱电解质明胶(Pectin)水溶液进行了详细的讨论。考察了不同多糖的种类(聚合物链的电荷密度),盐的种类和浓度,溶液温度等对凝胶化和凝胶结构的影响,分析了不同多糖溶液的凝胶化机理。
Resumo:
High resolution studies of a0/f0(980) decays into channels involving open strangeness are currently being performed at COSY-Jülich. As a “filter” for isospin-zero intermediate states, i.e. to selectively produce the f0(980) resonance, the dd→αK+K− reaction was measured with the magnetic ANKE spectrometer. In order to determine the luminosity of this experiment, the elastically and quasi-elastically scattered deuterons were recorded simultaneously with the αK+K− events. Here we report about the luminosity determination via investigating the (quasi-) elastic deuterons at ANKE.
Resumo:
The excitation functions of elastic scattering proton which were measured with inverse kinematics of elastic resonance scattering reactions in GANIL and MSU have been fitted by the multi-energy level R-matrix theory. The final result shows that the new energy levels order for nucleus N-11 should be 1/2(+), 1/2(-), 5/2(+), 3/2(+), 3/2(-), 5/2(+), 7/2(-), which is consistent with the experimental results of Be-11 (the mirror nucleus of N-11) and the theoretical calculation of N-11 with GCM theory.
Resumo:
A facile, efficient way to fabricate macroscopic soft colloidal crystals with fiber symmetry by drying a latex dispersion in a tube is presented. A transparent, stable colloidal crystal was obtained from a 25 wt % latex dispersion by complete water evaporation for 4 days. The centimeter-long sample was investigated by means of synchrotron small-angle X-ray diffraction (SAXD). Analysis of a large number of distinct Bragg peaks reveals that uniaxially oriented colloidal crystals with face-centered cubic lattice structure were formed.
Resumo:
Two kinds of dewetting and their transition induced by composition fluctuation due to different composition in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on SiOx substrate at 145 degrees C have been studied by in-situ atomic force microscopy (AFM). The results showed that morphology and pathway of dewetting depended crucially on the composition. Possible reason is the variation in intensity of composition fluctuation resulted from the change of components in polymer blend. Based on the discussion of this fluctuation due to the composition gradient, parameter of U-q0/E, which describes the initial amplitude of the surface undulation and original thickness of film respectively, has been employed to distinguish the morphologies of spontaneous dewetting including bicontinuous structures and holes.
Resumo:
High-solids, low-viscosity, stable polyacrylamide (PAM) aqueous dispersions were prepared by dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate (AS) using Poly (sodium acrylic acid) (PAANa) as the stabilizer, ammonium persulfate (APS) or 2,2'-Azobis (N,N'-dimethyleneisobutyramidine) dihydrochloride (VA-044) as the initiator. The molecular weight of the formed PAM, ranged from 710, 000 g/mol to 4,330,000 g/mol, was controlled by the addition of sodium formate as a conventional chain-transfer agent. The progress of a typical AM dispersion polymerization was monitored with aqueous size exclusion chromatography. The influences, of the AS concentration, the poly(sodium acrylic acid) concentration, the initiator type and concentration, the chain-transfer agent concentration and temperature Oil the monomer conversion, the dispersion viscosity, the PAM molecular weight and distribution, the particle size and morphology were systematically investigated.
Resumo:
The calculations presented in this paper are based on the Sanchez-Lacombe (SL) lattice fluid theory. The interaction energy parameter, g*(12)/k, required in this approach was obtained by fitting the cloud points of polystyrene (PS) /methyleyclohexane (MCH) polymer solutions under pressure. The SL lattice fluid theory was used to calculate the spinodals, the binodals, and the Flory-Huggins (FH) interaction parameter of the solutions. The calculated results show that the SL lattice fluid theory can describe the dependences of thermodynamics of PS/MCH solutions on temperature and pressure very well. However, the calculated enthalpy and the excess volume changes indicate that the Clausius-Clapeyron equation cannot be suitable to describe pressure effect on PS/MCH solutions. Further analysis on the thermodynamics of this system under pressure shows that the role of entropy is more important than the excess volume in the present case.
Resumo:
High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.
Resumo:
Deuterated polyethylene tracer molecules with small amount of branches (12 C2H5- branches per 1000 backbone carbon atoms) were blended with a hydrogenated polyethylene matrix to form a homogenous mixture. The conformational evolution of the deuterated chains in a stretched semi-cry stall me film was observed via online small angle neutron scattering measurements during annealing at high temperatures close to the melting point. Because the sample was annealed at a temperature closely below its melting point, the crystalline lamellae were only partially molten and the system could not fully relax. The global chain dimensions were preserved during annealing. Recrystallization of released polymeric chain segments allows for local phase separation thus driving the deuterated chain segments into the confining interlamellar amorphous layers giving rise to an interesting intra-molecular clustering effect of the long deuterated chain. This clustering is deduced from characteristic small angle neutron scattering patterns. The confined phase separation has its origin in primarily the small amount of the branches on the deuterated polymers which impede the crystallization of the deuterated chain segments.
Resumo:
The cloud-point temperatures (T-c1's) of ti-ans-decahydronaphthalene (TD)/polystyrene (PS, M-w = 270 kg/mol) solutions were determined by fight scattering measurements over a range of temperatures (1-16 degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol% polymer). The system phase separates upon cooling and the T-c1 was found to increase with the rising pressure for the constant composition. In the absence of special effects this finding indicates positive excess volumes. The special attention was paid to the demixing temperatures as a function of the pressure for the different polymer solutions and the plots in the T-volume fraction plane and P-volume fraction plane. The cloud-point curves of polymer solutions under changing pressures were observed for different compositions, demonstrates that the TD/PS system exhibits UCST (phase separation upon cooling) behavior. With this data the phase diagrams under pressure were calculated applying the Sanchez-Lacombe (SL) lattice fluid theory. Furthermore, the cause of phase separation, i.e., the influence of Flory-Huggins (FH) interaction parameter under pressure was investigated.