970 resultados para quantitative trait loci (QTLs)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial artificial chromosomes (BAC) have been widely used for fluorescence in situ hybridization (FISH) mapping of chromosome landmarks in different organisms, including a few in teleosts. In this study, we used BAC-FISH to consolidate the previous genetic and cytogenetic maps of the turbot (Scophthalmus maximus), a commercially important pleuronectiform. The maps consisted of 24 linkage groups (LGs) but only 22 chromosomes. All turbot LGs were assigned to specific chromosomes using BAC probes obtained from a turbot 5x genomic BAC library. It consisted of 46,080 clones with inserts of at least 100 kb and < 5 % empty vectors. These BAC probes contained gene-derived or anonymous markers, most of them linked to quantitative trait loci (QTL) related to productive traits. BAC clones were mapped by FISH to unique marker-specific chromosomal positions, which showed a notable concordance with previous genetic mapping data. The two metacentric pairs were cytogenetically assigned to LG2 and LG16, and the nucleolar organizer region (NOR)-bearing pair was assigned to LG15. Double-color FISH assays enabled the consolidation of the turbot genetic map into 22 linkage groups by merging LG8 with LG18 and LG21 with LG24. In this work, a first-generation probe panel of BAC clones anchored to the turbot linkage and cytogenetical map was developed. It is a useful tool for chromosome traceability in turbot, but also relevant in the context of pleuronectiform karyotypes, which often show small hardly identifiable chromosomes. This panel will also be valuable for further integrative genomics of turbot within Pleuronectiformes and teleosts, especially for fine QTL mapping for aquaculture traits, comparative genomics, and whole-genome assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Genética e Melhoramento Animal - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of quantitative trait loci (QTL) and marker-assisted selection with a view to breeding programs have aroused great interest, including for cashew improvement. This study identified QTL for yield-related traits: nut weight, male and hermaphrodite flowers. The traits were evaluated in 71 F-1 genotypes of the cross CCP 1001 x CP 96. The methods of interval mapping and multiple QTL mapping were applied to identify QTL. Eleven QTL were detected: three for nut weight, four for male flowers and four for hermaphrodite flowers. The QTL accounted for 3.79 to 12.98 % of the total phenotypic variance and had phenotypic effects of -31.81 to 34.25 %. The potential for marker-assisted selection of the QTL hf-2f and hf-3m is great and the phenotypic effects and percentage of phenotypic variation higher than of the others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oil content and grain yield in maize are negatively correlated, and so far the development of high-oil high-yielding hybrids has not been accomplished. Then a fully understand of the inheritance of the kernel oil content is necessary to implement a breeding program to improve both traits simultaneously. Conventional and molecular marker analyses of the design III were carried out from a reference population developed from two tropical inbred lines divergent for kernel oil content. The results showed that additive variance was quite larger than the dominance variance, and the heritability coefficient was very high. Sixteen QTL were mapped, they were not evenly distributed along the chromosomes, and accounted for 30.91% of the genetic variance. The average level of dominance computed from both conventional and QTL analysis was partial dominance. The overall results indicated that the additive effects were more important than the dominance effects, the latter were not unidirectional and then heterosis could not be exploited in crosses. Most of the favorable alleles of the QTL were in the high-oil parental inbred, which could be transferred to other inbreds via marker-assisted backcross selection. Our results coupled with reported information indicated that the development of high-oil hybrids with acceptable yields could be accomplished by using marker-assisted selection involving oil content, grain yield and its components. Finally, to exploit the xenia effect to increase even more the oil content, these hybrids should be used in the Top Cross((TM)) procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Tachycardia is commonly observed in hypertensive patients, predominantly mediated by regulatory mechanisms integrated within the autonomic nervous system. The genetic loci and genes associated with increased heart rate in hypertension, however, have not yet been identified. Methods An F2 intercross of Spontaneously Hypertensive Rats (SHR) × Brown Norway (BN) linkage analysis of quantitative trait loci mapping was utilized to identify candidate genes associated with an increased heart rate in arterial hypertension. Results Basal heart rate in SHR was higher compared to that of normotensive BN rats (365 ± 3 vs. 314 ± 6 bpm, p < 0.05 for SHR and BN, respectively). A total genome scan identified one quantitative trait locus in a 6.78 cM interval on rat chromosome 8 (8q22–q24) that was responsible for elevated heart rate. This interval contained 241 genes, of which 65 are known genes. Conclusion Our data suggest that an influential genetic region located on the rat chromosome 8 contributes to the regulation of heart rate. Candidate genes that have previously been associated with tachycardia and/or hypertension were found within this QTL, strengthening our hypothesis that these genes are, potentially, associated with the increase in heart rate in a hypertension rat model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cathepsin enzymes represent an important family of lysosomal proteinases with a broad spectrum of functions in many, if not in all, tissues and cell types. In addition to their primary role during the normal protein turnover, they possess highly specific proteolytic activities, including antigen processing in the immune response and a direct role in the development of obesity and tumours. In pigs, the involvement of cathepsin enzymes in proteolytic processes have important effects during the conversion of muscle to meat, due to their influence on meat texture and sensory characteristics, mainly in seasoned products. Their contribution is fundamental in flavour development of dry-curing hams. However, several authors have demonstrated that high cathepsin activity, in particular of cathepsin B, is correlated to defects of these products, such as an excessive meat softness together with abnormal free tyrosine content, astringent or metallic aftertastes and formation of a white film on the cut surface. Thus, investigation of their genetic variability could be useful to identify DNA markers associated with these dry cured hams parameters, but also with meat quality, production and carcass traits in Italian heavy pigs. Unfortunately, no association has been found between cathepsin markers and meat quality traits so far, in particular with cathepsin B activity, suggesting that other genes, besides these, affect meat quality parameters. Nevertheless, significant associations were observed with several carcass and production traits in pigs. A recent study has demonstrated that different single nucleotide polymorphisms (SNPs) localized in cathepsin D (CTSD), F (CTSF), H and Z genes were highly associated with growth, fat deposition and production traits in an Italian Large White pig population. The aim of this thesis was to confirm some of these results in other pig populations and identify new cathepsin markers in order to evaluate their effects on cathepsin activity and other production traits. Furthermore, starting from the data obtained in previous studies on CTSD gene, we also analyzed the known polymorphism located in the insulin-like growth factor 2 gene (IGF2 intron3-g.3072G>A). This marker is considered the causative mutation for the quantitative trait loci (QTL) affecting muscle mass and fat deposition in pigs. Since IGF2 maps very close to CTSD on porcine chromosome (SSC) 2, we wanted to clarify if the effects of the CTSD marker were due to linkage disequilibrium with the IGF2 intron3-g.3072G>A mutation or not. In the first chapter, we reported the results from these two SSC2 gene markers. First of all, we evaluated the effects of the IGF2 intron3-g.3072G>A polymorphism in the Italian Large White breed, for which no previous studies have analysed this marker. Highly significant associations were identified with all estimated breeding values for production and carcass traits (P<0.00001), while no effects were observed for meat quality traits. Instead, the IGF2 intron3-g.3072G>A mutation did not show any associations with the analyzed traits in the Italian Duroc pigs, probably due to the low level of variability at this polymorphic site for this breed. In the same Duroc pig population, significant associations were obtained for the CTSD marker for all production and carcass traits (P < 0.001), after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A polymorphism were also confirmed in a group of Italian Large White pigs homozygous for the IGF2 intron3-g.3072G allele G (IGF2 intron3-g.3072GG) and by haplotype analysis between the markers of the two considered genes. Taken together, all these data indicated that the IGF2 intron3-g.3072G>A mutation is not the only polymorphism affecting fatness and muscle deposition in pigs. In the second chapter, we reported the analysis of two new SNPs identified in cathepsin L (CTSL) and cathepsin S (CTSS) genes and the association results with meat quality parameters (including cathepsin B activity) and several production traits in an Italian Large White pig population. Allele frequencies of these two markers were evaluated in 7 different pig breeds. Furthermore, we mapped using a radiation hybrid panel the CTSS gene on SSC4. Association studies with several production traits, carried out in 268 Italian Large White pigs, indicated positive effects of the CTSL polymorphism on average daily gain, weight of lean cuts and backfat thickness (P<0.05). The results for these latter traits were also confirmed using a selective genotype approach in other Italian Large White pigs (P<0.01). In the 268 pig group, the CTSS polymorphism was associated with feed:gain ratio and average daily gain (P<0.05). Instead, no association was observed between the analysed markers and meat quality parameters. Finally, we wanted to verify if the positive results obtained for the cathepsin L and S markers and for other previous identified SNPs (cathepsin F, cathepsin Z and their inhibitor cystatin B) were confirmed in the Italian Duroc pig breed (third chapter). We analysed them in two groups of Duroc pigs: the first group was made of 218 performance-tested pigs not selected by any phenotypic criteria, the second group was made of 100 Italian Duroc pigs extreme and divergent for visible intermuscular fat trait. In the first group, the CTSL polymorphism was associated with weight of lean cuts (P<0.05), while suggestive associations were obtained for average daily gain and backfat thickness (P<0.10). Allele frequencies of the CTSL gene marker also differed positively among the visible intermuscular extreme tails. Instead, no positive effects were observed for the other DNA markers on the analysed traits. In conclusion, in agreement with the present data and for the biological role of these enzymes, the porcine CTSD and CTSL markers: a) may have a direct effect in the biological mechanisms involved in determining fat and lean meat content in pigs, or b) these markers could be very close to the putative functional mutation(s) present in other genes. These findings have important practical applications, in particular the CTSD and CTSL mutations could be applied in a marker assisted selection (MAS) both in the Italian Large White and Italian Duroc breeds. Marker assisted selection could also increase in efficiency by adding information from the cathepsin S genotype, but only in the Italian Large White breed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

153 Nachkommen einer Kreuzung aus der pilzresistenten Rebsorte ‘Regent‘ und ‘Lemberger‘ als klassischer pilzsensitiver Sorte zeigen quantitative Merkmalsvariation bezüglich der Resistenz gegen Plasmopara viticola und Uncinula necator sowie für weitere Eigenschaften, die z.B. das Eintreten der Beerenreife betreffen. Auf dem Weg über die genetische Kartierung mit molekularen Markern und der Lokalisierung von QTL-Effekten konnten Hinweise auf weinbaulich relevante Genomregionen gewonnen werden; dies liefert z.B. die Basis für markergestützte Selektion bei Zuchtvorhaben mit dem Resistenzträger ‘Regent’ (vgl. auch FISCHER et al., 2004). Ein Major-QTL für die Resistenz gegen den Echten Mehltau Uncinula necator sowie zwei Major QTL für die Resistenz gegen den Erreger des Falschen Mehltau, Plasmopara viticola, traten mit hoher Signifikanz auf drei verschiedenen Kopplungsgruppen von ‘Regent‘ auf. Auch Regionen mit Relevanz für das Eintreten der Beerenreife wurden beschrieben. Über die Isolierung, Sequenzierung und anschließende Analyse einzelner Markerfragmente mit Methoden der Bioinformatik ist es gelungen, ein putatives T10P12.4-Ortholog der Weinrebe (ein thioredoxinähnliches Protein) in enger Kopplung zu einem Major-QTL-Maximum für Plasmopara viticola-Resistenz zu identifizieren, das als Kandidat für die Beteiligung an der Pathogenantwort in Frage kommt. Es konnte exemplarisch gezeigt werden, dass die eingesetzten Methoden der Kartierung und QTL-Analyse unter Verwendung PCR-basierter Markertypen wie SSR und AFLP und einer beschleunigten Analyse über computergestützte Kapillargelelektrophorese in vertretbarem Zeitrahmen bis zur Isolation potentieller Schlüsselgene führen können. Die grundsätzliche Eignung der QTL-Analyse als effizientes Werkzeug gezielter Züchtungsplanung für den Weinbau bestätigte sich. Ihre Anwendung im Rahmen der vorliegenden Dissertation hat die Basis für die Nutzung von QTL-Information bei dem Vergleich etablierter und der Entwicklung neuer Sorten gelegt und zum Verständnis von Prozessen beigetragen, die den betrachteten Eigenschaften wie der Pilzresistenz möglicherweise zu Grunde liegen. Ein großer Teil der gewonnenen Daten bringt auch die Untersuchungen anderer Kultivare voran und ist intervarietal übertragbar. Darüber hinaus haben sich Chancen für vergleichende Studien zwischen der Weinrebe einerseits und der Modellpflanze Arabidopsis thaliana sowie weiteren Kulturpflanzen andererseits abgezeichnet. Die Hinweise auf die zentrale Rolle und universelle Natur des Redox-Signalling haben interessante Perspektiven zum Verständnis organismenübergreifender physiologischer Zusammenhänge eröffnet. Dies betrifft z.B. auch die Reaktion auf Verwundung oder die Pathogenantwort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiparental cross designs for mapping quantitative trait loci (QTL) in crops are efficient alternatives to conventional biparental experimental populations because they exploit a broader genetic basis and higher mapping resolution. We describe the development and deployment of a multiparental recombinant inbred line (RIL) population in durum wheat (Triticum durum Desf.) obtained by crossing four elite cultivars characterized by different traits of agronomic value. A linkage map spanning 2,663 cM and including 7,594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs with a wheat-dedicated 90k SNP chip. A cluster file was developed for correct allele calling in the framework of the tetraploid durum wheat genome. Based on phenotypic data collected over four field experiments, a multi-trait quantitative trait loci (QTL) analysis was carried out for 18 traits of agronomic relevance (including yield, yield-components, morpho-physiological and seed quality traits). Across environments, a total of 63 QTL were identified and characterized in terms of the four founder haplotypes. We mapped two QTL for grain yield across environments and 23 QTL for grain yield components. A novel major QTL for number of grain per spikelet/ear was mapped on chr 2A and shown to control up to 39% of phenotypic variance in this cross. Functionally different QTL alleles, in terms of direction and size of genetic effect, were distributed among the four parents. Based on the occurrence of QTL-clusters, we characterized the breeding values (in terms of effects on yield) of most of QTL for heading and maturity as well as yield component and quality QTL. This multiparental RIL population provides the wheat community with a highly informative QTL mapping resource enabling the dissection of the genetic architecture of multiple agronomic relevant traits in durum wheat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection. METHODS: Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture. RESULTS: Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'. CONCLUSIONS: The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.