991 resultados para psychophysical performance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Support and education for parents faced with managing a child with atopic dermatitis is crucial to the success of current treatments. Interventions aiming to improve parent management of this condition are promising. Unfortunately, evaluation is hampered by lack of precise research tools to measure change. OBJECTIVES: To develop a suite of valid and reliable research instruments to appraise parents' self-efficacy for performing atopic dermatitis management tasks; outcome expectations of performing management tasks; and self-reported task performance in a community sample of parents of children with atopic dermatitis. METHODS: The Parents' Eczema Management Scale (PEMS) and the Parents' Outcome Expectations of Eczema Management Scale (POEEMS) were developed from an existing self-efficacy scale, the Parental Self-Efficacy with Eczema Care Index (PASECI). Each scale was presented in a single self-administered questionnaire, to measure self-efficacy, outcome expectations, and self-reported task performance related to managing child atopic dermatitis. Each was tested with a community sample of parents of children with atopic dermatitis, and psychometric evaluation of the scales' reliability and validity was conducted. SETTING AND PARTICIPANTS: A community-based convenience sample of 120 parents of children with atopic dermatitis completed the self-administered questionnaire. Participants were recruited through schools across Australia. RESULTS: Satisfactory internal consistency and test-retest reliability was demonstrated for all three scales. Construct validity was satisfactory, with positive relationships between self-efficacy for managing atopic dermatitis and general perceived self-efficacy; self-efficacy for managing atopic dermatitis and self-reported task performance; and self-efficacy for managing atopic dermatitis and outcome expectations. Factor analyses revealed two-factor structures for PEMS and PASECI alike, with both scales containing factors related to performing routine management tasks, and managing the child's symptoms and behaviour. Factor analysis was also applied to POEEMS resulting in a three-factor structure. Factors relating to independent management of atopic dermatitis by the parent, involving healthcare professionals in management, and involving the child in the management of atopic dermatitis were found. Parents' self-efficacy and outcome expectations had a significant influence on self-reported task performance. CONCLUSIONS: Findings suggest that PEMS and POEEMS are valid and reliable instruments worthy of further psychometric evaluation. Likewise, validity and reliability of PASECI was confirmed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.