973 resultados para protein tyrosine kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most NK1.1+ T (NKT) cells express a biased TCRalphabeta repertoire that is positively selected by the monomorphic MHC class I-like molecule CD1d. The development of CD1d-dependent NKT cells is thymus dependent but, in contrast to conventional T cells, requires positive selection by cells of hemopoietic origin. Here, we show that the Src protein tyrosine kinase Fyn is required for development of CD1d-dependent NKT cells but not for the development of conventional T cells. In contrast, another Src kinase, Lck, is required for the development of both NKT and T cells. Impaired NKT cell development in Fyn-deficient mice cannot be rescued by transgenic expression of CD8, which is believed to increase the avidity of CD1d recognition by NKT cells. Taken together, our data reveal a selective and nonredundant role for Fyn in NKT cell development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognition by CD8+ cytotoxic T lymphocytes (CTLs) of antigenic peptides bound to major histocompatibility class (MHC) I molecules on target cells leads to sustained calcium mobilization and CTL degranulation resulting in perforin-dependent killing. We report that beta1 and beta3 integrin-mediated adhesion to extracellular matrix proteins on target cells and/or surfaces dramatically promotes CTL degranulation. CTLs, when adhered to fibronectin but not CTL in suspension, efficiently degranulate upon exposure to soluble MHC.peptide complexes, even monomeric ones. This adhesion induces recruitment and activation of the focal adhesion kinase Pyk2, the cytoskeleton linker paxillin, and the Src kinases Lck and Fyn in the contact site. The T cell receptor, by association with Pyk2, becomes part of this adhesion-induced activation cluster, which greatly increases its signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the role of the coreceptor CD8 and lipid rafts in cytotoxic T lymphocyte (CTL) activation, we used soluble mono-and multimeric H-2Kd-peptide complexes and cloned S14 CTL specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite (PbCS) peptide 252-260 [PbCS(ABA)]. We report that activation of CTL in suspension requires multimeric Kd-PbCS(ABA) complexes co-engaging TCR and CD8. Using TCR ligand photo-cross-linking, we find that monomeric Kd-PbCS(ABA) complexes promote association of TCR/CD3 with CD8/p56lck. Dimerization of these adducts results in activation of p56lck in lipid rafts, where phosphatases are excluded. Additional cross-linking further increases p56lck kinase activity, induces translocation of TCR/CD3 and other signaling molecules to lipid rafts and intracellular calcium mobilization. These events are prevented by blocking Src kinases or CD8 binding to TCR-associated Kd molecules, indicating that CTL activation is initiated by cross-linking of CD8-associated p56lck. They are also inhibited by methyl-beta-cyclodextrin, which disrupts rafts and by dipalmitoyl phosphatidylethanolamine, which interferes with TCR signaling. Because efficient association of CD8 and p56lck takes place in rafts, both reagents, though in different ways, impair coupling of p56lck to TCR, thereby inhibiting the initial and essential activation of p56lck induced by cross-linking of engaged TCR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé : Le virus tumoral de la glande mammaire de la souris (MMTV) est un rétrovirus provoquant le développement de tumeurs dans les glandes mammaires des souris susceptibles femelles. Au cours de son évolution, le virus s'est adapté et s'exprime dans des cellules spécialisées. Les lymphocytes B sont les premières cellules infectées et elles sont essentielles pour la propagation de l'infection aux glandes mammaires. Dans notre étude, le virus MMTV a été utilisé afin d'examiner les voies de signalisation induites par les glucocorticoïdes (dexaméthasone (dex), une hormone stéroïdienne) et le transforming growth factor-f3 (TGF-P, une cytokine), deux molécules impliquées dans l'activation de la transcription à partir du promoteur du MMTV dans les cellules B. Le TGF-P seul n'influence pas l'activité du promoteur du MMTV. Par contre, en synergie avec dex, le TGF-P provoque une super-induction de l'expression du promoteur par rapport à une stimulation par le glucocorticoïde seul. Cette super-induction est régulée par une famille de protéines, les Smads. Ainsi, dans les lymphocytes B, l'utilisation du MMTV a permis de mettre en évidence une nouvelle synergie entre les glueocortieoïdes et le TGF-p. pans ce travail, l'utilisation d'inhibiteurs pharmacologiques et de mutants « dominant-négatifs » nous a pet mis de démontrer qu'une Protéine Kinase C delta (PKC5) active est impliquée dans la transduction du signal lors de la réponse au dex ainsi que celle au TGF-P. Néanmoins, la PKC5 est régulée différemment dans chaque voie spécifique : la voie du TGF-p nécessitait l'activation du PKC5 par diacylglycerol (DAG) et la phosphorylation de tyrosines spécifiques, alors que la voie impliquant les glucocorticoïdes ne le nécessitait pas. Nous avons aussi démontré qu'une tyrosine kinase de la famille Src est responsable de la phosphorylation des tyrosines sur la PKC5. Les essais de kinase in vitro nous ont permis de découvrir que plusieurs Src kinases peuvent phosphoryler la PKC6 dans les cellules B et qu'elles étaient constitutivement actives. Enfin, nous avons montré qu'il existe une interaction protéine - protéine induite par dex, entre le récepteur aux glucocorticoïdes (GR) et la PKC5 dans les cellules B, une association qui n'a pas été démontrée auparavant. Par ailleurs, nous avons analysé les domaines d'interactions entre PKC5 et GR en utilisant les essais de «GST pull-down». Nos résultats montrent que le domaine régulateur de la PKC5 et celui qui interagit avec l'ADN du GR sont impliqués. En résumé, nous avons trouvé que dans une lignée lymphocytaire B, le virus MMTV utilise des mécanismes pour réguler à la fois la transcription et la voie de signalisation qui sont différents de ceux utilisés dans les cellules mammaires épithéliales et les fibroblastes. Nos découvertes pourraient être utilisées comme modèles pour l'étude de gènes cellulaires impliqués dans des processus tels qu'inflammation, immunité ou cancérogénèse. Summary: Mouse Mammary Tumor Virus (MMTV) is a retrovirus that causes tumors in the mammary glands of susceptible female mice and has adapted evolutionarily to be expressed in specialized cells. The B lymphocytes are the first cells to be infected by the MMTV and are essential for the spread of infection to the mammary glands. Here, we used the MMTV as a model system to investigate the signalling cascade induced by giucocorticoids (dexamethasone, "dex", a steroid hormone), and by Transforming Growth Factor-beta (TGF-P, a cytokine) leading to its transcriptional activation in B lymphocytes. By itself, TGF-I3 does not affect the basal activity of the MMTV promoter. However, TGF-13 significantly increases glucocorticoid-induced expression, through its effectors, the Smad factors. Thus, MMTV in B cells demonstrates a novel synergism between glucocorticoids and TGF-16. In this thesis project, we present evidence, based on the use of pharmacological inhibitors and of dominant-negative mutants, that an active Protein Kinase C delta (PKC6) is required as a signal transducer for the dex response and for the TGF-P superinduction as well. The PKC6 is differentially regulated in each specific pathway: whereas the TGF-13 superinduction required PKC6 to be activated by diacylglycerol (DAG) and to be phosphorylated at specific tyrosine residues, the glueocorticoid-induced pathway did not. We also showed that a protein tyrosine kinase of the Src family is responsible for the phosphorylation of tyrosines on PKC6. By performing in vitro kinase assays, we found that several Src kinases of B cells were able to phosphorylate PKC6 and that they were constitutively active. Finally, we demonstrate a dex-dependent functional protein-protein interaction between the glucocorticoid receptor (GR) and PKC6 in B cells, an association that has not been previously described. We further analysed the interacting domains of PKG6 and GR using in vitro GST pull-down assays, whereby the regulatory domain of PKC6 and the extended DNA-binding domain of the GR were involved. In summary, we found that in B-lymphoid cell lines, MMTV uses novel mechanisms of transcriptional control and signal transduction that are different from those at work in mammary epithelial or fibroblastic cells. These findings will be used as model for cellular genes involved in cellular processes such as immune functions, inflammation, or oncogenic transformation that may have a similar pattern of regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extraordinary sensitivity of CD8+ T cells to recognize antigen impinges to a large extent on the coreceptor CD8. While several studies have shown that the CD8beta chain endows CD8 with efficient coreceptor function, the molecular basis for this is enigmatic. Here we report that cell-associated CD8alphabeta, but not CD8alphaalpha or soluble CD8alphabeta, substantially increases the avidity of T cell receptor (TCR)-ligand binding. To elucidate how the cytoplasmic and transmembrane portions of CD8beta endow CD8 with efficient coreceptor function, we examined T1.4 T cell hybridomas transfected with various CD8beta constructs. T1.4 hybridomas recognize a photoreactive Plasmodium berghei circumsporozoite (PbCS) peptide derivative (PbCS (4-azidobezoic acid [ABA])) in the context of H-2K(d), and permit assessment of TCR-ligand binding by TCR photoaffinity labeling. We find that the cytoplasmic portion of CD8beta, mainly due to its palmitoylation, mediates partitioning of CD8 in lipid rafts, where it efficiently associates with p56(lck). In addition, the cytoplasmic portion of CD8beta mediates constitutive association of CD8 with TCR/CD3. The resulting TCR-CD8 adducts exhibit high affinity for major histocompatibility complex (MHC)-peptide. Importantly, because CD8alphabeta partitions in rafts, its interaction with TCR/CD3 promotes raft association of TCR/CD3. Engagement of these TCR/CD3-CD8/lck adducts by multimeric MHC-peptide induces activation of p56(lck) in rafts, which in turn phosphorylates CD3 and initiates T cell activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell activation by the specific Ag results in dramatic changes of the T cell phenotype that include a rapid and profound down-regulation and degradation of triggered TCRs. In this work, we investigated the fate of the TCR-associated ZAP-70 kinase in Ag-stimulated T cells. T cells stimulated by peptide-pulsed APCs undergo an Ag dose-dependent decrease of the total cellular content of ZAP-70, as detected by FACS analysis and confocal microscopy on fixed and permeabilized T cell-APC conjugates and by Western blot on total cell lysates. The time course of ZAP-70 consumption overlaps with that of zeta-chain degradation, indicating that ZAP-70 is degraded in parallel with TCR internalization and degradation. Pharmacological activation of protein kinase C (PKC) does not induce ZAP-70 degradation, which, on the contrary, requires activation of protein tyrosine kinases. Two lines of evidence indicate that the Ca2+-dependent cysteine protease calpain plays a major role in initiating ZAP-70 degradation: 1) treatment of T cells with cell-permeating inhibitors of calpain markedly reduces ZAP-70 degradation; 2) ZAP-70 is cleaved in vitro by calpain. Our results show that, in the course of T cell-APC cognate interaction, ZAP-70 is rapidly degraded via a calpain-dependent mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes a form of partial agonism for a CD8+ CTL clone, S15, in which perforin-dependent killing and IFN-gamma production were lost but Fas (APO1 or CD95)-dependent cytotoxicity preserved. Cloned S15 CTL are H-2Kd restricted and specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). The presence of a photoactivatable group in the epitope permitted assessment of TCR-ligand binding by TCR photoaffinity labeling. Selective activation of Fas-dependent killing was observed for a peptide-derivative variant containing a modified photoreactive group. A similar functional response was obtained after binding of the wild-type peptide derivative upon blocking of CD8 participation in TCR-ligand binding. The epitope modification or blocking of CD8 resulted in an > or = 8-fold decrease in TCR-ligand binding. In both cases, phosphorylation of zeta-chain and ZAP-70, as well as calcium mobilization were reduced close to background levels, indicating that activation of Fas-dependent cytotoxicity required weaker TCR signaling than activation of perforin-dependent killing or IFN-gamma production. Consistent with this, we observed that depletion of the protein tyrosine kinase p56(lck) by preincubation of S15 CTL with herbimycin A severely impaired perforin- but not Fas-dependent cytotoxicity. Together with the observation that S15 CTL constitutively express Fas ligand, these results indicate that TCR signaling too weak to elicit perforin-dependent cytotoxicity or cytokine production can induce Fas-dependent cytotoxicity, possibly by translocation of preformed Fas ligand to the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i) both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175), and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii) treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii) the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv) treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v) drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filamin A (FlnA) cross-links actin filaments and connects the Von Willebrand factor receptor GPIb-IX-V to the underlying cytoskeleton in platelets. Because FlnA deficiency is embryonic lethal, mice lacking FlnA in platelets were generated by breeding FlnA(loxP/loxP) females with GATA1-Cre males. FlnA(loxP/y) GATA1-Cre males have a macrothrombocytopenia and increased tail bleeding times. FlnA-null platelets have decreased expression and altered surface distribution of GPIbalpha because they lack the normal cytoskeletal linkage of GPIbalpha to underlying actin filaments. This results in approximately 70% less platelet coverage on collagen-coated surfaces at shear rates of 1,500/s, compared with wild-type platelets. Unexpectedly, however, immunoreceptor tyrosine-based activation motif (ITAM)- and ITAM-like-mediated signals are severely compromised in FlnA-null platelets. FlnA-null platelets fail to spread and have decreased alpha-granule secretion, integrin alphaIIbbeta3 activation, and protein tyrosine phosphorylation, particularly that of the protein tyrosine kinase Syk and phospholipase C-gamma2, in response to stimulation through the collagen receptor GPVI and the C-type lectin-like receptor 2. This signaling defect was traced to the loss of a novel FlnA-Syk interaction, as Syk binds to FlnA at immunoglobulin-like repeat 5. Our findings reveal that the interaction between FlnA and Syk regulates ITAM- and ITAM-like-containing receptor signaling and platelet function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis is caused by Paracoccidioides brasiliensis, which although not formally considered an intracellular pathogen, can be internalized by epithelial cells in vitro and in vivo. The mechanisms used by P. brasiliensis to adhere to and invade non-professional phagocytes have not been identified. The signal-transduction networks, involving protein tyrosine kinase (PTK) and protein phosphatase activities, can modulate crucial events during fungal infections. In this study, the involvement of PTK has been investigated in P. brasiliensis adherence and invasion in mammalian epithelial cells. A significant inhibition of the fungal invasion occurred after the pre-treatment of the epithelial cells with genistein, a specific tyrosine kinase inhibitor, indicating that the tyrosine kinase pathway is involved in P. brasiliensis internalization. In contrast, when the fungus was treated, a slight (not significant) inhibition of PTK was observed, suggesting that PTK might not be the fungus' transduction signal pathway during the invasion process of epithelial cells. An intense PTK immunofluorescence labeling was observed in the periphery of the P. brasiliensis infected cells, little PTK labeling was found in both uninfected cells and yeast cells, at later infection times (8 and 24 h). Moreover, when the epithelial cells were treated with genistein and infected with P. brasiliensis, no labeling was observed, suggesting the importance of the PTK in the infectious process. These results suggest that PTK pathway participates in the transduction signal during the initial events of the adhesion and invasion processes of P. brasiliensis to mammalian epithelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Birth weight (BW) is an economically important trait in beef cattle, and is associated with growth- and stature-related traits and calving difficulty. One region of the cattle genome, located on Bos primigenius taurus chromosome 14 (BTA14), has been previously shown to be associated with stature by multiple independent studies, and contains orthologous genes affecting human height. A genome-wide association study (GWAS) for BW in Brazilian Nellore cattle (Bos primigenius indicus) was performed using estimated breeding values (EBVs) of 654 progeny-tested bulls genotyped for over 777,000 single nucleotide polymorphisms (SNPs).Results: The most significant SNP (rs133012258, PGC = 1.34 × 10-9), located at BTA14:25376827, explained 4.62% of the variance in BW EBVs. The surrounding 1 Mb region presented high identity with human, pig and mouse autosomes 8, 4 and 4, respectively, and contains the orthologous height genes PLAG1, CHCHD7, MOS, RPS20, LYN, RDHE2 (SDR16C5) and PENK. The region also overlapped 28 quantitative trait loci (QTLs) previously reported in literature by linkage mapping studies in cattle, including QTLs for birth weight, mature height, carcass weight, stature, pre-weaning average daily gain, calving ease, and gestation length.Conclusions: This study presents the first GWAS applying a high-density SNP panel to identify putative chromosome regions affecting birth weight in Nellore cattle. These results suggest that the QTLs on BTA14 associated with body size in taurine cattle (Bos primigenius taurus) also affect birth weight and size in zebu cattle (Bos primigenius indicus). © 2013 Utsunomiya et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The KIT receptor protein-tyrosine kinase plays an important role during embryonic development. Activation of KIT is crucial for the development of various cell lineages such as melanoblasts, stem cells of the haematopoietic system, spermatogonia and intestinal cells of Cajal. In mice, many mutations in the Kit gene cause pigmentation disorders accompanied by pleiotropic effects on blood cells and male fertility. Previous work has demonstrated that dominant white Franches-Montagnes horses carry one copy of the KIT gene with the p.Y717X mutation. The targeted breeding of white horses would be ethically questionable if white horses were known to suffer from anaemia or leukopenia. The present study demonstrates that no statistically significant differences in peripheral blood parameters are detectable between dominant white and solid-coloured Franches-Montagnes horses. The data indicate that KIT mutations may have different effects in mice, pigs, and horses. The KIT p.Y717X mutation does not have a major negative effect on the haematopoietic system of dominant white horses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylcoccus aureus is a prokaryotic organism capable of causing numerous superficial and severe human infections. Adhesion of S. aureus to host tissues or cells is believed to be a crucial event in S. aureus infections. Subsequently, S. aureus can seed into the bloodstream resulting in metastasis of the infection. Several reports show that S. aureus can be internalized by non-professional phagocytes, a process which has been proposed to be important in S. aureus dissemination. An intracellular residence has also been proposed to provide safe harbor to reservoirs of dormant bacteria contributing to the persistence of infection. This dissertation describes an investigation into the molecular mechanisms of S. aureus internalization into both fibroblast and epithelial cells. Bacterial requirements for internalization were found to be limited to expression of proteins that bind the extracellular matrix protein fibronectin. A previously unknown fibronectin-binding region in the S. aureus fibronectin-binding protein A was discovered after showing competitive inhibition of S. aureus internalization. This novel fibronectin-binding activity is characterized. Internalization also required cell-based factors. The presence of fibronectin and cell surface receptors of the β1 integrin class, which are known to bind and internalize fibronectin, were found to be necessary for optimal internalization of S. aureus. These results led to the conclusion that fibronectin acts as a bridge between the bacterium and integrins on the host cells. The internalization process exhibits features characteristic of integrin-mediated cell migration on fibronectin-coated surfaces. Both processes involved an active form of the β1 integrin subunit and the protein tyrosine kinase Src. Finally, a Src inhibitor previously shown to be effective in reducing osteoporosis in an in vivo rat model is capable of greatly reducing S. aureus internalization. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent data suggest that the generation of new lymphatic vessels (i.e. lymphangiogenesis) may be a rate-limiting step in the dissemination of tumor cells to regional lymph nodes. However, efforts to study the cellular and molecular interactions that take place between tumor cells and lymphatic endothelial cells have been limited due to a lack of lymphatic endothelial cell lines available for study. ^ I have used a microsurgical approach to establish conditionally immortalized lymphatic endothelial cell lines from the afferent mesenteric lymphatic vessels of mice. Characterization of lymphatic endothelial cells, and tumor-associated lymphatic vessels revealed high expression levels of VCAM-1, which is known to facilitate adhesion of some tumor cells to vascular endothelial cells. Further investigation revealed that murine melanoma cells selected for high expression of α4, a counter-receptor for VCAM-1, demonstrated enhanced adhesion to lymphatic endothelial cells in vitro, and increased tumorigenicity and lymphatic metastasis in vivo, despite similar lymphatic vessel numbers. ^ Next, I examined the effects of growth factors that regulate lymphangiogenesis, and report that several growth factors are capable of activating survival and proliferation pathways of lymphatic endothelial cells. The dual protein tyrosine kinase inhibitor AEE788 (EGFR and VEGFR-2) inhibited the activation of Akt and MAPK in lymphatic endothelial cells responding to multiple growth factors. Moreover, oral treatment of mice with AEE788 decreased lymphatic vessel density and production of lymphatic metastasis by human colon cancer cells growing in the cecum of nude mice. ^ In the last set of experiments, I investigated the surgical management of lymphatic metastasis using a novel model of sentinel lymphadenectomy in live mice bearing subcutaneous B16-BL6 melanoma. The data demonstrate that this procedure when combined with wide excision of the primary melanoma, significantly enhanced survival of syngeneic C57BL/6 mice. ^ Collectively, these results indicate that the production of lymphatic metastasis depends on lymphangiogenesis, tumor cell adhesion to lymphatic endothelial cells, and proliferation of tumor cells in lymph nodes. Thus, lymphatic metastasis is a multi-step, complex, and active process that depends upon multiple interactions between tumor cells and tumor associated lymphatic endothelial cells. ^