952 resultados para protein kinase G


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mRNA stabilizing factor HuR is involved in the posttranscriptional regulation of many genes, including that coding for cyclooxygenase 2 (COX-2). Employing RNA interference technology and actinomycin D experiments, we demonstrate that in human mesangial cells (hMC) the amplification of cytokine-induced COX-2 by angiotensin II (AngII) occurs via a HuR-mediated increase of mRNA stability. Using COX-2 promoter constructs with different portions of the 3' untranslated region of COX-2, we found that the increase in COX-2 mRNA stability is attributable to a distal class III type of AU-rich element (ARE). Likewise, the RNA immunoprecipitation assay showed AngII-induced binding of HuR to this ARE. Using the RNA pulldown assay, we demonstrate that the AngII-caused HuR assembly with COX-2 mRNA is found in free and cytoskeleton-bound polysomes indicative of an active RNP complex. Mechanistically, the increased HuR binding to COX-2-ARE by AngII is accompanied by increased nucleocytoplasmic HuR shuttling and depends on protein kinase Cdelta (PKCdelta), which physically interacts with nuclear HuR, thereby promoting its phosphorylation. Mapping of phosphorylation sites identified serines 221 and 318 as critical target sites for PKCdelta-triggered HuR phosphorylation and AngII-induced HuR export to the cytoplasm. Posttranslational modification of HuR by PKCdelta represents an important novel mode of HuR activation implied in renal COX-2 regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study whether protein kinase C (PKC) isoforms can interact with protein-tyrosine-phosphatases (PTPs) which are connected to the insulin signaling pathway, we co-overexpressed PKC isoforms together with insulin receptor, docking proteins, and the PTPs SHP1 and SHP2 in human embryonic kidney (HEK) 293 cells. After phorbol ester induced activation of PKC isoforms alpha, beta 1, beta 2, and eta, we could show a defined gel mobility shift of SHP2, indicating phosphorylation on serine/threonine residues. This phosphorylation was not dependent on insulin receptor or insulin receptor substrate-1 (IRS-1) overexpression and did not occur for the closely related phosphatase SHP1. Furthermore, PKC phosphorylation of SHP2 was completely blocked by the PKC inhibitor bisindolylmaleimide and was not detectable when SHP2 was co-overexpressed with kinase negative mutants of PKC beta 1 and -beta 2. The phosphorylation also occurred on endogenous SHP2 in Chinese hamster ovary (CHO) cells stably overexpressing PKC beta 2. Using point mutants of SHP2, we identified serine residues 576 and 591 as phosphorylation sites for PKC. However, no change of phosphatase activity by TPA treatment was detected in an in vitro assay. In summary, SHP2 is phosphorylated on serine residues 576 and 591 by PKC isoforms alpha, beta 1, beta 2, and eta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor beta-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity. METHODS: Tyrosine kinase assay and transfection studies. RESULTS: In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms beta2 and theta. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C. CONCLUSION/INTERPRETATION: The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms beta2 and theta on insulin receptor autophosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pleckstrin is a modular platelet protein consisting of N- and C-terminal pleckstrin homology (PH) domains, a central dishevelled egl10 and pleckstrin (DEP) domain and a phosphorylation region. Following agonist-induced platelet stimulation, dimeric pleckstrin translocates to the plasma membrane, is phosphorylated and then monomerizes. A recent study found that pleckstrin null platelets from a knockout mouse have a defect in granule secretion, actin polymerization and aggregation. However, the mechanism of pleckstrin signaling for this function is unknown. Our recent studies have led to the identification of a novel pleckstrin-binding protein, serum deprivation response protein (SDPR), by co-immunoprecipitation, GST-pulldowns and nanospray quadruple time of flight mass spectrometry. We show that this interaction occurs directly through N-terminal sequences of pleckstrin. Both pleckstrin and SDPR are phosphorylated by protein kinase C (PKC), but the interaction between pleckstrin and SDPR was shown to be independent of PKC inhibition or activation. These results suggest that SDPR may facilitate the translocation of nonphosphorylated pleckstrin to the plasma membrane in conjunction with phosphoinositides that bind to the C-terminal PH domain. After binding of pleckstrin to the plasma membrane, its phosphorylation by PKC exerts downstream effects on platelet aggregation/secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modulation of gene regulation by progesterone (P) and its classical intracellular regulation by progestin receptors in the brain, resulting in alterations in physiology and behavior has been well studied. The mechanisms mediating the short latency effects of P are less well understood. Recent studies have revealed rapid nonclassical signaling action of P involving the activation of intracellular signaling pathways. We explored the involvement of protein kinase C (PKC) in P-induced rapid signaling in the ventromedial nucleus of the hypothalamus (VMN) and preoptic area (POA) of the rat brain. Both the Ca2+-independent (basal) PKC activity representing the activation of PKC by the in vivo treatments and the Ca+2-dependent (total) PKC activity assayed in the presence of exogenous cofactors in vitro were determined. A comparison of the two activities demonstrated the strength and temporal status of PKC regulation by steroid hormones in vivo. P treatment resulted in a rapid increase in basal PKC activity in the VMN but not the POA. Estradiol benzoate priming augmented P-initiated increase in PKC basal activity in both the VMN and POA. These increases were inhibited by intracerebroventricular administration of a PKC inhibitor administered 30 min prior to P. The total PKC activity remained unchanged demonstrating maximal PKC activation within 30 min in the VMN. In contrast, P regulation in the POA significantly attenuated total PKC activity +/- estradiol benzoate priming. These rapid changes in P-initiated PKC activity were not due to changes in PKC protein levels or phosphorylation status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyrosine hydroxylase (TH), the initial and rate limiting enzyme in the catecholaminergic biosynthetic pathway, is phosphorylated on multiple serine residues by multiple protein kinases. Although it has been demonstrated that many protein kinases are capable of phosphorylating and activating TH in vitro, it is less clear which protein kinases participate in the physiological regulation of catecholamine synthesis in situ. These studies were designed to determine if protein kinase C (PK-C) plays such a regulatory role.^ Stimulation of intact bovine adrenal chromaffin cells with phorbol esters results in stimulation of catecholamine synthesis, tyrosine hydroxylase phosphorylation and activation. These responses are both time and concentration dependent, and are specific for those phorbol ester analogues which activate PK-C. RP-HPLC analysis of TH tryptic phosphopeptides indicate that PK-C phosphorylates TH on three putative sites. One of these (pepetide 6) is the same as that phosphorylated by both cAMP-dependent protein kinase (PK-A) and calcium/calmodulin-dependent protein kinase (CaM-K). However, two of these sites (peptides 4 and 7) are unique, and, to date, have not been shown to be phosphorylated by any other protein kinase. These peptides correspond to those which are phosphorylated with a slow time course in response to stimulation of chromaffin cells with the natural agonist acetylcholine. The activation of TH produced by PK-C is most closely correlated with the phosphorylation of peptide 6. But, as evident from pH profiles of tyrosine hydroxylase activity, phosphorylation of peptides 4 and 7 affect the expression of the activation produced by phosphorylation of peptide 6.^ These data support a role for PK-C in the control of TH activity, and suggest a two stage model for the physiological regulation of catecholamine synthesis by phosphorylation in response to cholinergic stimulation. An initial fast response, which appears to be mediated by CaM-K, and a slower, sustained response which appears to be mediated by PK-C. In addition, the multiple site phosphorylation of TH provides a mechanism whereby the regulation of catecholamine synthesis appears to be under the control of multiple protein kinases, and allows for the convergence of multiple, diverse physiological and biochemical signals. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ca$\sp{++}$/calmodulin-dependent protein kinase II (CaM-KII) is highly concentrated in mammalian brain, comprising as much as 2% of the total protein in some regions. In forebrain, CaM-KII has been shown to be enriched in postsynaptic structures where it has been implicated in maintaining cytoskeletal structure, and more recently in signal transduction mechanisms and processes underlying learning and memory. CaM-KII appears to exist as a holoenzyme composed of two related yet distinct subunits, alpha and beta. The ratio of the subunits in the holoenzyme varies with different brain regions and to some degree with subcellular fractions. The two subunits also display distinct developmental profiles. Levels of alpha subunit are not evident at birth but increase dramatically during postnatal development, while levels of beta subunit are readily detected at birth and only gradual increase postnatally. The distinct regional, subcellular and developmental distribution of the two subunits of CaM-KII have prompted us to examine factors involved in regulating the synthesis of the subunit proteins.^ This dissertation addresses the regional and developmental expression of the mRNAs for the individual subunits using in situ hybridization histochemistry and northern slot-blot analysis. By comparing the developmental profile of each mRNA with that of its respective protein, we have determined that initiation of gene transcription is likely the primary site for regulating CaM-KII protein levels. Furthermore, the distinct cytoarchitecture of the hippocampus has allowed us to demonstrate that the alpha, but not beta subunit mRNA is localized in dendrites of certain forebrain neurons. The localization of alpha subunit mRNA at postsynaptic structures, in concert with the accumulation of subunit protein, suggests that dendritic synthesis of CaM-KII alpha subunit may be important for maintaining postsynaptic structure and/or function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous experiments had shown no differences in desensitization in cells with mutations of the adenylyl cyclase or the cAMP-dependent protein kinase and had ruled out this kinase as a mediator of desensitization; however, the assays of adenylyl cyclase had been made at high concentrations of free magnesium. The work presented in this dissertation documents a role for cAMP-dependent protein kinase which became apparent with assays at low concentrations of free magnesium. (1) The adenylyl cyclase in membranes from wild type S49 lymphoma cells showed substantial desensitization after incubation of the intact cells with low concentrations of epinephrine (5-20 nM). This desensitization was heterologous, that is it reduced the subsequent responses of the adenylyl cyclase to both epinephrine and prostaglandin-E$\sb1$. (2) The adenylyl cyclase in membranes of S49 cyc$\sp-$ cells, which do not make cAMP in response to hormones, and S49 kin$\sp-$ cells, which lack cAMP-dependent protein kinase activity, showed no heterologous desensitization following incubation of the intact cells with low concentrations of hormones. (3) Heterologous desensitization of the adenylyl cyclase was induced by incubations of wild type cells with forskolin, which activates the adenylyl cyclase downstream of the hormone receptors, or dibutyryl-cAMP, which activates the cAMP-dependent protein kinase directly. (4) Site-directed mutagenesis was used to delete the cAMP-dependent protein kinase consensus phosphorylation sequences on the $\beta$-adrenergic receptor. Heterologous desensitization occurred in intact L-cells expressing the wild type receptor or the receptor lacking the C-terminal phosphorylation site; however, only homologous desensitization occurred when the phosphorylation site on the third intracellular loop of the receptor was deleted. (5) To test directly the effects of cAMP-dependent protein kinase on the adenylyl cyclase the catalytic subunit of the kinase was purified from bovine heart and incubated with adenylyl cyclase in plasma membrane preparations. In this cell-free system the kinase caused rapid heterlogous reductions of the responsiveness of the S49 wild type adenylyl cyclase. Additionally, the adenylyl cyclase in kin$\sp-$ membranes, which showed only homologous desensitization in the intact cell, was desensitization by cell-free incubation with the kinase.^ The epinephrine responsiveness was not affected in L-cell membranes expressing the $\beta$-adrenergic receptor lacking the cAMP-dependent protein kinase consensus sequence on the third intracellular loop. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous proteins in intracellular signaling pathways are known to be covalently modified by long chain fatty acids. The objective of this project was to identify potentially novel components of the protein kinase C signaling pathway by virtue of their fatty acylation. A 64 kDa palmitoylated protein (p64) was identified that became deacylated following stimulation of quiescent cells with serum, FGF, or PDBu, suggesting that stimulus-dependent deacylation might alter interactions between p64 and other membrane/cytoskeletal components. A myristoylated protein of 68 kDa observed during these studies was identified as the "80K" PKC substrate. This protein was acylated cotranslationally with myristate through an amide linkage. The majority of the 80K protein was tightly associated with the plasma membrane, with approximately 20% in the cytosol. Although phosphorylation of the membrane-bound and soluble forms of the protein was increased 6-fold in response to PDBu, no changes in the subcellular distribution or myristoylation of the protein were observed. A cDNA encoding the murine form of this protein was cloned, and its deduced amino acid sequence revealed the presence of an N-terminal myristoylation consensus and five potential sites for phosphorylation by PKC. A mutant in which the N-terminal glycine residue was changed to alanine was no longer a substrate for NMT and consequently lost its membrane-binding potential. However, its ability to be phosphorylated in response to purified growth factors and phorbol esters was unimpaired. These results indicate that the myristoylated N-terminus of the 80K protein is required for its association with the plasma membrane, and that the cytoplasmic form of the protein can be phosphorylated independently of the membrane-bound form. Mutants of PKC were constructed in which the regulatory domain was removed and replaced by the N-terminus of the 80K or Al proteins. Unexpectedly, both the myristoylated and nonmyristoylated fusion proteins were tightly associated with the nuclear envelope. Further deletion analyses mapped nuclear targeting signals to the hinge region and a portion of the catalytic domain of PKC, explaining the ability of PKC to be translocated to the nucleus in response to certain stimuli. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasticity at the connections between sensory neurons and their follower cells in Aplysia has been used extensively as a model system to examine mechanisms of simple forms of learning, such as sensitization. Sensitization is induced, at least in part, by the transmitter serotonin (5-HT) and expressed in several forms, including facilitation of sensorimotor connections. Spike broadening has been believed to be a key mechanism underlying facilitation of nondepressed synapses. Previously, this broadening was believed to be dependent primarily on cAMP/protein kinase A (PKA)-mediated reduction of a noninactivating, relatively voltage-independent K$\sp{+}$ current termed the S-K$\sp+$ current (I$\sb{\rm K{,}S}$). Recent evidence, however, suggests that 5-HT-induced somatic spike broadening is composed of at least two components: a cAMP-dependent, rapidly developing component and a cAMP-independent, slowly developing component.^ Phorbol esters, activators of protein kinase C (PKC), mimicked the cAMP-independent component of 5-HT-induced broadening. Staurosporine, which inhibits PKC, had little effect on the rapidly developing component of 5-HT-induced broadening, but inhibited significantly the slowly developing component. These results suggest that PKC is involved in the cAMP-independent component of 5-HT-induced broadening. The membrane currents responsible for the slowly developing component of broadening were examined. Activation of PKC mimicked, and partially occluded, 5-HT-induced modulation of membrane currents above 0 mV, where a voltage-dependent K$\sp+$ current (I$\sb{\rm K{,}V}$) is significantly activated. This modulation was complex because it was associated with a reduction in the magnitude of I$\sb{\rm K{,}V}$, as well as a slowing of both activation and inactivation kinetics of I$\sb{\rm K{,}V}$. These results support the hypothesis that PKC modulates I$\sb{\rm K{,}V}$ and that this modulation contributes to the slowly developing component of 5-HT-induced broadening. Based on these results and others, a new scheme for 5-HT-induced spike broadening is proposed in which the modulatory effects are mediated via two second messenger/protein kinase systems converging and diverging on multiple ionic conductances.^ The relationship between spike broadening and synaptic facilitation was also examined. Pharmacological reduction of I$\sb{\rm K{,}V}$ by low concentrations of 4-aminopyridine (4-AP) led to spike broadening and facilitation of the nondepressed sensorimotor connections, indicating that spike broadening via the reduction of I$\sc{K,V}$ can facilitate the synaptic connection. Further analyses, however, revealed that 4-AP-induced facilitation has qualitative differences from 5-HT- and PKC-induced facilitation. These results suggest that 5-HT- and PKC-induced facilitation of nondepressed synapses is mediated, at least in part, by spike-duration independent (SDI) processes. Under certain conditions, the PKC inhibitor, staurosporine, significantly inhibited the 5-HT-induced facilitation of sensorimotor connections.^ Finally, it was found that activation of PKC increased a basal level of cAMP and that PKC caused desensitization of the 5-HT receptor, which may be a possible negative feedback mechanism through which an extracellular ligand, 5-HT, is regulated. These results suggest that these two second messenger/protein kinase pathways can interact in the sensory neuron. Thus, neuronal plasticity that may contribute to learning and memory appears to involve several complex and interactive processes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-dependent refractoriness of calcium (Ca2+) release in cardiac myocytes is an important factor in determining whether pro-arrhythmic release patterns develop. At the subcellular level of the Ca2+ spark, recent studies have suggested that recovery of spark amplitude is controlled by local sarcoplasmic reticulum (SR) refilling whereas refractoriness of spark triggering depends on both refilling and the sensitivity of the ryanodine receptor (RyR) release channels that produce sparks. Here we studied regulation of Ca2+ spark refractoriness in mouse ventricular myocytes by examining how β-adrenergic stimulation influenced sequences of Ca2+ sparks originating from individual RyR clusters. Our protocol allowed us to separately measure recovery of spark amplitude and delays between successive sparks, and data were interpreted quantitatively through simulations with a stochastic mathematical model. We found that, compared with spark sequences measured under control conditions: (1) β-adrenergic stimulation with isoproterenol accelerated spark amplitude recovery and decreased spark-to-spark delays; (2) activating protein kinase A (PKA) with forskolin accelerated amplitude recovery but did not affect spark-to-spark delays; (3) inhibiting PKA with H89 retarded amplitude recovery and increased spark- to-spark delays; (4) preventing phosphorylation of the RyR at serine 2808 with a knock-in mouse prevented the decrease in spark-to-spark delays seen with β-adrenergic stimulation; (5) inhibiting either PKA or Ca2+/calmodulin-dependent protein kinase II (CaMKII) during β-adrenergic stimulation prevented the decrease in spark-to-spark delays seen) without inhibition. The results suggest that activation of either PKA or CaMKII is sufficient to speed SR refilling, but activation of both kinases appears necessary to observe increased RyR sensitivity. The data provide novel insight into β-adrenergic regulation of Ca2+ release refractoriness in mouse myocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Death-associated protein kinase 2 (DAPK2) is a Ca(2+)/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein's subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.