982 resultados para prostaglandin endoperoxide synthase 2
Resumo:
Acetohydroxyacid synthase (AHAS) (acetolactate synthase, EC 4.1.3.18) catalyzes the first step in branchedchain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides. These compounds are potent and selective inhibitors, but their binding site on AHAS has not been elucidated. Here we report the 2.8 Angstrom resolution crystal structure of yeast AHAS in complex with a sulfonylurea herbicide, chlorimuron ethyl. The inhibitor, which has a K-i of 3.3 nM blocks access to the active site and contacts multiple residues where mutation results in herbicide resistance. The structure provides a starting point for the rational design of further herbicidal compounds.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology by Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica, Instituto Gulbenkian de Ciência.
Resumo:
A metabolic hypothesis is presented for insulin resistance in obesity, in the presence or absence of Type 2 (non-insulin-dependent) diabetes mellitus. It is based on physiological mechanisms including a series of negative feed-back mechanisms, with the inhibition of the function of the glycogen cycle in skeletal muscle as a consequence of decreased glucose utilization resulting from increased lipid oxidation in the obese. It considers the inhibition of glycogen synthase activity together with inhibition of glucose storage and impaired glucose tolerance. The prolonged duration of increased lipid oxidation, considered as the initial cause, may lead to Type 2 diabetes. This hypothesis is compatible with others based on the inhibition of insulin receptor kinase and of glucose transporter activities.
Resumo:
Cyclooxyganase-2 (COX-2), a rate-limiting enzyme in the prostaglandin synthesis pathway, is overexpressed in many cancers and contributes to cancer progression through tumor cell-autonomous and paracrine effects. Regular use of non-steroidal anti-inflammatory drugs or selective COX-2 inhibitors (COXIBs) reduces the risk of cancer development and progression, in particular of the colon. The COXIB celecoxib is approved for adjunct therapy in patients with Familial adenomatous polyposis at high risk for colorectal cancer (CRC) formation. Long-term use of COXIBs, however, is associated with potentially severe cardiovascular complications, which hampers their broader use as preventive anticancer agents. In an effort to better understand the tumor-suppressive mechanisms of COXIBs, we identified MAGUK with Inverted domain structure-1 (MAGI1), a scaffolding protein implicated in the stabilization of adherens junctions, as a gene upregulated by COXIB in CRC cells and acting as tumor suppressor. Overexpression of MAGI1 in CRC cell lines SW480 and HCT116 induced an epithelial-like morphology; stabilized E-cadherin and β-catenin localization at cell-cell junctions; enhanced actin stress fiber and focal adhesion formation; increased cell adhesion to matrix proteins and suppressed Wnt signaling, anchorage-independent growth, migration and invasion in vitro. Conversely, MAGI1 silencing decreased E-cadherin and β-catenin localization at cell-cell junctions; disrupted actin stress fiber and focal adhesion formation; and enhanced Wnt signaling, anchorage-independent growth, migration and invasion in vitro. MAGI1 overexpression suppressed SW480 and HCT116 subcutaneous primary tumor growth, attenuated primary tumor growth and spontaneous lung metastasis in an orthotopic model of CRC, and decreased the number and size of metastatic nodules in an experimental model of lung metastasis. Collectively, these results identify MAG1 as a COXIB-induced inhibitor of the Wnt/β-catenin signaling pathway, with tumor-suppressive and anti-metastatic activity in experimental colon cancer.
Resumo:
Nitric oxide (NO) and monocyte chemoattractant protein-1 (MCP-1) exert partly opposing effects in vascular biology. NO plays pleiotropic vasoprotective roles including vasodilation and inhibition of platelet aggregation, smooth muscle cell proliferation, and endothelial monocyte adhesion, the last effect being mediated by MCP-1 downregulation. Early stages of arteriosclerosis are associated with reduced NO bioactivity and enhanced MCP-1 expression. We have evaluated adenovirus-mediated gene transfer of human endothelial NO synthase (eNOS) and of a N-terminal deletion (8ND) mutant of the MCP-1 gene that acts as a MCP-1 inhibitor in arteriosclerosis-prone, apolipoprotein E-deficient (ApoE(-/-)) mice. Endothelium-dependent relaxations were impaired in carotid arteries instilled with a noncoding adenoviral vector but were restored by eNOS gene transfer (p < 0.01). A perivascular collar was placed around the common carotid artery to accelerate lesion formation. eNOS gene transfer reduced lesion surface areas, intima/media ratios, and macrophage contents in the media at 5-week follow-up (p < 0.05). In contrast, 8ND-MCP-1 gene transfer did not prevent lesion formation. In conclusion, eNOS gene transfer restores endothelium-dependent vasodilation and inhibits lesion formation in ApoE(-/-) mouse carotids. Further studies are needed to assess whether vasoprotection is maintained at later disease stages and to evaluate the long-term efficacy of eNOS gene therapy for primary arteriosclerosis.
Resumo:
Pachydermoperiostosis, or primary hypertrophic osteoarthropathy (PHO), is an inherited multisystem disorder, whose features closely mimic the reactive osteoarthropathy that commonly accompanies neoplastic and inflammatory pathologies. We previously described deficiency of the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD) as a cause of this condition, implicating elevated circulating prostaglandin E(2) (PGE(2) ) as causative of PHO, and perhaps also as the principal mediator of secondary HO. However, PHO is genetically heterogeneous. Here, we use whole-exome sequencing to identify recessive mutations of the prostaglandin transporter SLCO2A1, in individuals lacking HPGD mutations. We performed exome sequencing of four probands with severe PHO, followed by conventional mutation analysis of SLCO2A1 in nine others. Biallelic SLCO2A1 mutations were identified in 12 of the 13 families. Affected individuals had elevated urinary PGE(2) , but unlike HPGD-deficient patients, also excreted considerable quantities of the PGE(2) metabolite, PGE-M. Clinical differences between the two groups were also identified, notably that SLCO2A1-deficient individuals have a high frequency of severe anemia due to myelofibrosis. These findings reinforce the key role of systemic or local prostaglandin excess as the stimulus to HO. They also suggest that the induction or maintenance of hematopoietic stem cells by prostaglandin may depend upon transporter activity. Hum Mutat 33:1175-1181, 2012. © 2012 Wiley Periodicals, Inc.
Resumo:
PURPOSE: To determine whether bovine corneal endothelial (BCE) cells and keratocytes express the inducible form of nitric oxide synthase (NOS) after exposure to cytokines and lipopolysaccharide (LPS), and to study the regulation of NOS by growth factors. METHODS: Cultures of bovine corneal endothelial cells and keratocytes were exposed to increasing concentrations of LPS, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha). At selected intervals after exposure, nitrite levels in the supernatants were evaluated by the Griess reaction. Total RNA was extracted from the cell cultures, and messenger RNA levels for inducible NOS (NOS-2) were measured by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Exposure of BCE cells and keratocytes to LPS and IFN-gamma resulted in an increase of nitrite levels that was potentiate by the addition of TNF-alpha. Analysis by RT-PCR demonstrated that nitrite release was correlated to the expression of NOS-2 messenger RNA in BCE cells and keratocytes. Stereoselective inhibitors of NOS and cycloheximide inhibited LPS-IFN-gamma-induced nitrite release in both cells, whereas transforming growth factor-beta (TGF-beta) slightly potentiated it. Fibroblast growth factor-2 (FGF-2) inhibited LPS-IFN-gamma-induced nitrite release and NOS-2 messenger RNA accumulation in keratocytes but not in BCE cells. CONCLUSIONS: The results demonstrate that in vitro activation of keratocytes and BCE cells by LPS and cytokines induces NOS-2 expression and release of large amounts of NO. The high amounts of NO could be involved in inflammatory corneal diseases in vivo.
Resumo:
In Pseudomonas aeruginosa the extracellular metabolite and siderophore pyochelin is synthesized from two major precursors, chorismate and l-cysteine via salicylate as an intermediate. The regulatory role of isochorismate synthase, the first enzyme in the pyochelin biosynthetic pathway, was studied. This enzyme is encoded by pchA, the last gene in the pchDCBA operon. The PchA protein was purified to apparent electrophoretic homogeneity from a PchA-overexpressing P. aeruginosa strain. The native enzyme was a 52-kDa monomer in solution, and its activity strictly depended on Mg(2+). At pH 7.0, the optimum, a K(m) = 4.5 microm and a k(cat) = 43.1 min(-1) were determined for chorismate. No feedback inhibitors or other allosteric effectors were found. The intracellular PchA concentration critically determined the rate of salicylate formation both in vitro and in vivo. In cultures grown in iron-limiting media to high cell densities, overexpression of the pchA gene resulted in overproduction of salicylate as well as in enhanced pyochelin formation. From this work and earlier studies, it is proposed that one important factor influencing the flux through the pyochelin biosynthetic pathway is the PchA concentration, which is determined at a transcriptional level, with pyochelin acting as a positive signal and iron as a negative signal.
Resumo:
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.
Resumo:
OBJECTIVE Zinc-α(2) glycoprotein (ZAG) stimulates lipid loss by adipocytes and may be involved in the regulation of adipose tissue metabolism. However, to date no studies have been made in the most extreme of obesity. The aims of this study are to analyze ZAG expression levels in adipose tissue from morbidly obese patients, and their relationship with lipogenic and lipolytic genes and with insulin resistance (IR). METHODS mRNA expression levels of PPARγ, IRS-1, IRS-2, lipogenic and lipolytic genes and ZAG were quantified in visceral (VAT) and subcutaneous adipose tissue (SAT) of 25 nondiabetic morbidly obese patients, 11 with low IR and 14 with high IR. Plasma ZAG was also analyzed. RESULTS The morbidly obese patients with low IR had a higher VAT ZAG expression as compared with the patients with high IR (p = 0.023). In the patients with low IR, the VAT ZAG expression was greater than that in SAT (p = 0.009). ZAG expression correlated between SAT and VAT (r = 0.709, p<0.001). VAT ZAG expression was mainly predicted by insulin, HOMA-IR, plasma adiponectin and expression of adiponectin and ACSS2. SAT ZAG expression was only predicted by expression of ATGL. CONCLUSIONS ZAG could be involved in modulating lipid metabolism in adipose tissue and is associated with insulin resistance. These findings suggest that ZAG may be a useful target in obesity and related disorders, such as diabetes.
Resumo:
The goal of the present study was to examine the viscoelastic properties of the carotid artery in genetically identical rats exposed to similar levels of blood pressure sustained by different mechanisms. Eight-week old male Wistar rats were examined 2 weeks after renal artery clipping (two-kidney, one clip [2K1C] Goldblatt rats, n = 53) or sham operation (n = 49). One half of the 2K1C and sham rats received the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 1.48 mmol/L) in their drinking water for 2 weeks after the surgical procedure. Mean blood pressure increased significantly in the 2K1C-water (182 mm Hg), 2K1C-L-NAME (197 mm Hg), and sham-L-NAME (170 mm Hg) rats compared with the sham-water rats (127 mm Hg). Plasma renin activity was not altered by L-NAME but significantly enhanced after renal artery clipping. A significant and similar increase in the cross-sectional area of the carotid artery was observed in L-NAME and vehicle-treated 2K1C rats. L-NAME per se did not modify cross-sectional area in the sham rats. There was a significant upward shift of the distensibility-pressure curve in the L-NAME- and vehicle-treated 2K1C rats compared with the sham-L-NAME rats. L-NAME treatment did not alter the distensibility-pressure curve in the 2K1C rats. These results demonstrate that the mechanisms responsible for artery wall hypertrophy in renovascular hypertension are accompanied by an increase in arterial distensibility that is not dependent on the synthesis of nitric oxide.
Resumo:
Exercise is known to reduce cardiovascular risk. However, its role on atherosclerotic plaque stabilization is unknown. Apolipoprotein E(-/-) mice with vulnerable (2-kidney, 1-clip: angiotensin [Ang] II-dependent hypertension model) or stable atherosclerotic plaques (1-kidney, 1-clip: Ang II-independent hypertension model and normotensive shams) were used for experiments. Mice swam regularly for 5 weeks and were compared with sedentary controls. Exercised 2-kidney, 1-clip mice developed significantly more stable plaques (thinner fibrous cap, decreased media degeneration, layering, macrophage content, and increased smooth muscle cells) than sedentary controls. Exercise did not affect blood pressure. Conversely, swimming significantly reduced aortic Ang II type 1 receptor mRNA levels, whereas Ang II type 2 receptor expression remained unaffected. Sympathetic tone also significantly diminished in exercised 2-kidney, 1-clip mice compared with sedentary ones; renin and aldosterone levels tended to increase. Ang II type 1 downregulation was not accompanied by improved endothelial function, and no difference in balance among T-helper 1, T-helper 2, and T regulatory cells was observed between sedentary and exercised mice. These results show for the first time, in a mouse model of Ang II-mediated vulnerable plaques, that swimming prevents atherosclerosis progression and plaque vulnerability. This benefit is likely mediated by downregulating aortic Ang II type 1 receptor expression independent from any hemodynamic change. Ang II type 1 downregulation may protect the vessel wall from the Ang II proatherogenic effects. Moreover, data presented herein further emphasize the pivotal and blood pressure-independent role of Ang II in atherogenesis.
Resumo:
OBJECTIVE: To investigate the hemodynamic effects of L-canavanine (an inhibitor of inducible, but not of constitutive, nitric oxide synthase) in endotoxic shock. DESIGN: Controlled, randomized, experimental study. SETTING: Animal laboratory. SUBJECTS: Wistar rats. INTERVENTIONS: Rats were anesthetized with pentobarbital, and hemodynamically monitored. One hour after an intravenous challenge with 5 mg/kg of Escherichia coli endotoxin, the rats were randomized to receive a continuous infusion of either L-canavanine (20 mg/kg/hr; n = 8) or vehicle only (isotonic saline, n = 11). In all animals, the infusion was given over 5 hrs at a rate of 2 mL/kg/hr. These experiments were repeated in additional rats challenged with isotonic saline instead of endotoxin (sham experiments). MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, heart rate, thermodilution cardiac output, central venous pressure, mean systemic filling pressure, urine output, arterial blood gases, blood lactate concentration, and hematocrit were measured. In sham experiments, hemodynamic stability was maintained throughout and L-canavanine had no detectable effect. Animals challenged with endotoxin and not treated with L-canavanine developed progressive hypotension and low cardiac output. After 6 hrs of endotoxemia, both central venous pressure and mean systemic filling pressure were significantly below their baseline values, indicating relative hypovolemia as the main determinant of reduced cardiac output. In endotoxemic animals treated with L-canavanine, hypotension was less marked, while cardiac output, central venous pressure, and mean systemic filling pressure were maintained throughout the experiment. L-canavanine had no effect on the time-course of hematocrit. L-canavanine significantly increased urine output and reduced the severity of lactic acidosis. CONCLUSIONS: Six hours after an endotoxin challenge in rats, low cardiac output develops, which appears to be primarily related to relative hypovolemia. L-canavanine, a selective inhibitor of the inducible nitric oxide synthase, increases the mean systemic filling pressure, thereby improving venous return, under these conditions.
Resumo:
We have recently reported that the inhibition of endothelial cell COX-2 by non-steroidal anti-inflammatory drugs suppresses alpha(V)beta(3)- (but not alpha(5)beta(1)-) dependent Rac activation, endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047). Here we investigated the role of the COX-2 metabolites PGE(2) and TXA2 in regulating human umbilical vein endothelial cell (HUVEC) adhesion and spreading. We report that PGE(2) accelerated alpha(V)beta(3)-mediated HUVEC adhesion and promoted Rac activation and cell spreading, whereas the TXA2 agonist retarded adhesion and inhibited spreading. We show that the cAMP level and the cAMP-regulated protein kinase A (PKA) activity are critical mediators of these PGE(2) effects. alpha(V)beta(3)-mediated adhesion induced a transient COX-2-dependent rise in cAMP levels, whereas the cell-permeable cAMP analogue 8-brcAMP accelerated adhesion, promoted Rac activation, and cell spreading in the presence of the COX-2 inhibitor NS-398. Pharmacological inhibition of PKA completely blocked alpha(V)beta(3)-mediated adhesion. A constitutively active Rac mutant (L61Rac) rescued alpha(V)beta(3)-dependent spreading in the presence of NS398 or, but did not accelerate adhesion, whereas a dominant negative Rac mutant (N17Rac) suppressed spreading without affecting adhesion. alpha(5)beta(1)-mediated HUVEC adhesion, Rac activation, and spreading were not affected by PGE(2), 8-brcAMP, or the inhibition of PKA. In conclusion, these results demonstrate that PGE(2) accelerates alpha(V)beta(3)-mediated endothelial cell adhesion through cAMP-dependent PKA activation and induces alpha(V)beta(3)-dependent spreading via cAMP- and PKA-dependent Rac activation and may contribute to the further understanding of the regulation of vascular integrins alpha(V)beta(3) by COX-2/PGE(2) during tumor angiogenesis and inflammation.
Resumo:
Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37-1.73]; combined P=2.58 · 10(-13)). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25-1.44; P=1.032 · 10(-14)). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16-3.66) for systolic and 1.40 (95% CI: 0.25-2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.