900 resultados para power transmission lines
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering open access. The methodology finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with multiples generation scenarios. The model presented is solved using a specialized genetic algorithm. The methodology is tested in a system from the literature. ©2008 IEEE.
Resumo:
This paper describes a method for the decentralized solution of the optimal reactive power flow (ORPF) problem in interconnected power systems. The ORPF model is solved in a decentralized framework, consisting of regions, where the transmission system operator in each area operates its system independently of the other areas, obtaining an optimal coordinated but decentralized solution. The proposed scheme is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). An implementation of an interior point method is described to solve the decoupled problem in each area. The described method is successfully implemented and tested using the IEEE two area RTS 96 test system. Numerical results comparing the solutions obtained by the traditional and the proposed decentralized methods are presented for validation. ©2008 IEEE.
Resumo:
This paper presents a nonlinear model with individual representation of plants for the centralized long-term hydrothermal scheduling problem over multiple areas. In addition to common aspects of long-term scheduling, this model takes transmission constraints into account. The ability to optimize hydropower exchange among multiple areas is important because it enables further minimization of complementary thermal generation costs. Also, by considering transmission constraints for long-term scheduling, a more precise coupling with shorter horizon schedules can be expected. This is an important characteristic from both operational and economic viewpoints. The proposed model is solved by a sequential quadratic programming approach in the form of a prototype system for different case studies. An analysis of the benefits provided by the model is also presented. ©2009 IEEE.
Resumo:
This paper presents a methodology for the placement and sizing evaluation of distributed generation (DG) in electric power systems. The candidate locations for DG placement are identified on the bases of Locational Marginal Prices (LMP's) obtained from an optimal power flow solution. The problem is formulated for two different objectives: social welfare maximization and profit maximization. For each DG unit an optimal placement is identified for each of the objectives.
Resumo:
In this paper, the short term transmission network expansion planning (STTNEP) is solved through a specialized genetic algorithm (SGA). A complete AC model of the transmission network is used, which permits the formulation of an integrated power system transmission network expansion planning problem (real and reactive power planning). The characteristics of the proposed SGA to solve the STTNEP problem are detailed and an interior point method is employed to solve nonlinear programming problems during the solution steps of the SGA. Results of tests carried out with two electrical energy systems show the capabilities of the SGA and also the viability of using the AC model to solve the STTNEP problem. © 2009 IEEE.
Resumo:
In this work, a heuristic model for integrated planning of primary distribution network and secondary distribution circuits is proposed. A Tabu Search (TS) algorithm is employed to solve the planning of primary distribution networks. Evolutionary Algorithms (EA) are used to solve the planning model of secondary networks. The planning integration of both networks is carried out by means a constructive heuristic taking into account a set of integration alternatives between these networks. These integration alternatives are treated in a hierarchical way. The planning of primary networks and secondary distribution circuits is carried out based on assessment of the effects of the alternative solutions in the expansion costs of both networks simultaneously. In order to evaluate this methodology, tests were performed for a real-life distribution system taking into account the primary and secondary networks.
Resumo:
An alternative method is presented in this paper to identify the harmonic components of non-linear loads in single phase power systems based on artificial neural networks. The components are identified by analyzing the single phase current waveform in time domain in half-cycle of the ac voltage source. The proposed method is compared to the fast Fourier transform. Simulation and experimental results are presented to validate the proposed approach.
Resumo:
Reliability is a key aspect in power system design and planning. Maintaining a reliable power system is a very important issue for their design and operation. Under the new competitive framework of the electricity sector, power systems find ever more and more strained to operate near their limits. Under this new scenario, it is crucial for the system operator to use tools that facilitate an energy dispatch that minimizes possible power cuts. This paper presents a mathematical model to calculate an energy dispatch that considers security constraints (single contingencies in transmission lines and transformers). The model involves pool markets and fixed bilateral contracts. Traditional methodologies that include security constraints are usually based in multistage dispatch processes. In this case, we propose a single-stage model that avoids the economic inefficiencies which result when conventional multi-stage dispatch approaches are applied. The proposed model includes an AC representation of the transport system and allows calculating the cost overruns incurred in due to reliability restrictions. We found that complying with fixed bilateral contracts, when they go above certain levels, might lead to congestion problems in transmission lines.
Resumo:
This paper presents a methodology to solve the transmission network expansion planning problem (TNEP) considering reliability and uncertainty in the demand. The proposed methodology provides an optimal expansion plan that allows the power system to operate adequately with an acceptable level of reliability and in an enviroment with uncertainness. The reliability criterion limits the expected value of the reliability index (LOLE - Loss Of Load Expectation) of the expanded system. The reliability is evaluated for the transmission system using an analytical technique based in enumeration. The mathematical model is solved, in a efficient way, using a specialized genetic algorithm of Chu-Beasley modified. Detailed results from an illustrative example are presented and discussed. © 2009 IEEE.
Resumo:
SMART material systems offer great possibilities in terms of providing novel and economical solutions to engineering problems. The technological advantages of these materials over traditional ones are due to their unique microstructure and molecular properties. Smart materials such as shape memory alloys (SMA), has been used in such diverse areas of engineering science, nowadays. In this paper, we present a numerical investigation of the dynamics interaction of a nonideal structure (NIS). We analyze the phenomenon of the passage through resonance region in the steady state processes. We remarked that this kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the DC motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure it is reached, the better part of this energy it is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. The results obtained by using numerical simulations are discussed in details. Copyright © 2009 by ASME.
Resumo:
This paper presents the application of a new metaheuristic algorithm to solve the transmission expansion planning problem. A simple heuristic, using a relaxed network model associated with cost perturbation, is applied to generate a set of high quality initial solutions with different topologies. The population is evolved using a multi-move path-relinking with the objective of finding minimum investment cost for the transmission expansion planning problem employing the DC representation. The algorithm is tested on the southern Brazilian system, obtaining the optimal solution for the system with better performance than similar metaheuristics algorithms applied to the same problem. ©2010 IEEE.
Resumo:
This paper proposes a new approach for optimal phasor measurement units placement for fault location on electric power distribution systems using Greedy Randomized Adaptive Search Procedure metaheuristic and Monte Carlo simulation. The optimized placement model herein proposed is a general methodology that can be used to place devices aiming to record the voltage sag magnitudes for any fault location algorithm that uses voltage information measured at a limited set of nodes along the feeder. An overhead, three-phase, three-wire, 13.8 kV, 134-node, real-life feeder model is used to evaluate the algorithm. Tests show that the results of the fault location methodology were improved thanks to the new optimized allocation of the meters pinpointed using this methodology. © 2011 IEEE.
Resumo:
This paper presents an approach for probabilistic analysis of unbalanced three-phase weakly meshed distribution systems considering uncertainty in load demand. In order to achieve high computational efficiency this approach uses both an efficient method for probabilistic analysis and a radial power flow. The probabilistic approach used is the well-known Two-Point Estimate Method. Meanwhile, the compensation-based radial power flow is used in order to extract benefits from the topological characteristics of the distribution systems. The generation model proposed allows modeling either PQ or PV bus on the connection point between the network and the distributed generator. In addition allows control of the generator operating conditions, such as the field current and the power delivery at terminals. Results on test with IEEE 37 bus system is given to illustrate the operation and effectiveness of the proposed approach. A Monte Carlo Simulations method is used to validate the results. © 2011 IEEE.
Resumo:
This paper presents a Bi-level Programming (BP) approach to solve the Transmission Network Expansion Planning (TNEP) problem. The proposed model is envisaged under a market environment and considers security constraints. The upper-level of the BP problem corresponds to the transmission planner which procures the minimization of the total investment and load shedding cost. This upper-level problem is constrained by a single lower-level optimization problem which models a market clearing mechanism that includes security constraints. Results on the Garver's 6-bus and IEEE 24-bus RTS test systems are presented and discussed. Finally, some conclusions are drawn. © 2011 IEEE.
Resumo:
This paper presents small-signal stability studies of a multimachine power system, considering Static Synchronous Compensators (STATCOM)and discussed control modes of the STATCOM. The Power Sensitivity Model(PSM)is used to represent the electric power system. The study is based on modal analysis and time domain simulations. The results obtained allow concluding that the STATCOM improves the stabilization in the electric power system. © 2011 IEEE.