935 resultados para post-transcriptional control


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Alterations in lipid metabolism occur when animals are exposed to different feeding systems. In the last few decades, the characterisation of genes involved in fat metabolism and technological advances have enabled the study of the effect of diet on the milk fatty acid (FA) profile in the mammary gland and aided in the elucidation of the mechanisms of the response to diet. The aim of this study was to evaluate the effect of different forage diets (grazing vs. hay) near the time of ewe parturition on the relationship between the fatty acid profile and gene expression in the mammary gland of the Churra Tensina sheep breed. Results: In this study, the forage type affected the C18:2 cis-9 trans-11 (CLA) and long-chain saturated fatty acid (LCFA) content, with higher percentages during grazing than during hay feeding. This may suggest that these FAs act as regulatory factors for the transcriptional control of the carnitine palmitoyltransferase 1B (CPT1B) gene, which was more highly expressed in the grazing group (GRE). The most highly expressed gene in the mammary gland at the fifth week of lactation is CAAT/ enhancer- binding protein beta (CEBPB), possibly due to its role in milk fat synthesis in the mammary gland. More stable housekeeping genes in the ovine mammary gland that would be appropriate for use in gene expression studies were ribosomal protein L19 (RPL19) and glyceraldehyde- 3- phosphate dehydrogenase (GAPDH). Conclusions: Small changes in diet, such as the forage preservation (grazing vs. hay), can affect the milk fatty acid profile and the expression of the CPT1B gene, which is associated with the oxidation of fatty acids. When compared to hay fed indoors, grazing fresh low mountain pastures stimulates the milk content of CLA and LCFA via mammary uptake. In this sense, LCFA in milk may be acting as a regulatory factor for transcriptional control of the CPT1B gene, which was more highly expressed in the grazing group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, a handful of intergenic long noncoding RNAs (lncRNAs) have been shown to compete with mRNAs for binding to miRNAs and to contribute to development and disease. Beyond these reports, little is yet known of the extent and functional consequences of miRNA-mediated regulation of mRNA levels by lncRNAs. To gain further insight into lncRNA-mRNA miRNA-mediated crosstalk, we reanalyzed transcriptome-wide changes induced by the targeted knockdown of over 100 lncRNA transcripts in mouse embryonic stem cells (mESCs). We predicted that, on average, almost one-fifth of the transcript level changes induced by lncRNAs are dependent on miRNAs that are highly abundant in mESCs. We validated these findings experimentally by temporally profiling transcriptome-wide changes in gene expression following the loss of miRNA biogenesis in mESCs. Following the depletion of miRNAs, we found that >50% of lncRNAs and their miRNA-dependent mRNA targets were up-regulated coordinately, consistent with their interaction being miRNA-mediated. These lncRNAs are preferentially located in the cytoplasm, and the response elements for miRNAs they share with their targets have been preserved in mammals by purifying selection. Lastly, miRNA-dependent mRNA targets of each lncRNA tended to share common biological functions. Post-transcriptional miRNA-mediated crosstalk between lncRNAs and mRNA, in mESCs, is thus surprisingly prevalent, conserved in mammals, and likely to contribute to critical developmental processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background: Micro RNAs are small, non-coding, single-stranded RNAs that negatively regulate gene expression at the post-transcriptional level. Since miR-143 was found to be down-regulated in prostate cancer cells, we wanted to analyze its expression in human prostate cancer, and test the ability of miR-43 to arrest prostate cancer cell growth in vitro and in vivo. Results: Expression of miR-143 was analyzed in human prostate cancers by quantitative PCR, and by in situ hybridization. miR-143 was introduced in cancer cells in vivo by electroporation. Bioinformatics analysis and luciferase-based assays were used to determine miR-143 targets. We show in this study that miR-143 levels are inversely correlated with advanced stages of prostate cancer. Rescue of miR-143 expression in cancer cells results in the arrest of cell proliferation and the abrogation of tumor growth in mice. Furthermore, we show that the effects of miR-143 are mediated, at least in part by the inhibition of extracellular signal-regulated kinase-5 (ERK5) activity. We show here that ERK5 is a miR-143 target in prostate cancer. Conclusions: miR-143 is as a new target for prostate cancer treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acquisition of phosphate from the soil and its distribution across plant tissues, as well as between the cytosol and organelles, is dependent on an array of transporters, which include proton-phosphate cotransporters belonging to the family of PHT proteins, the PHO1 phosphate exporter, as well as organellar phosphate exchangers. The expression of these transporters is regulated both at the transcriptional and post-transcriptional levels, and their activity and localisation is controlled by modifications such as phosphorylation and ubiquitination. Proteins including the PHR1 and WRKY6 transcription factors, PHO2 and NLA involved in ubiquitination, as well as SPX proteins, form a network which enables plants to regulate phosphate transport activity under both nutrient-sufficient and -deficient conditions, allowing them to survive, grow and produce seeds under adverse conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents. Here we investigated the impact of prenatal exposure to DEHP on spermatogenesis and DNA sperm methylation in two distinct, selected, and sequenced mice strains. FVB/N and C57BL/6J mice were orally exposed to 300 mg/kg/day of DEHP from gestation day 9 to 19. Prenatal DEHP exposure significantly decreased spermatogenesis in C57BL/6J (fold-change = 0.6, p-value = 8.7*10-4), but not in FVB/N (fold-change = 1, p-value = 0.9). The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N. At the promoter level, three important subsets of genes were massively affected. Promoters of vomeronasal and olfactory receptors coding genes globally followed the same trend, more pronounced in the C57BL/6J strain, of being hyper-methylated in DEHP related conditions. In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain. We additionally analyze both the presence of functional genetic variations within genes that were associated with the detected DMRs and that could be involved in spermatogenesis, and DMRs related with the DEHP exposure that affected both strains in an opposite manner. The major finding in this study indicates that prenatal exposure to DEHP can decrease spermatogenesis in a strain-dependent manner and affects sperm DNA methylation in promoters of large sets of genes putatively involved in both sperm chemotaxis and post-transcriptional regulatory mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sixteen transgenic yellow passionfruit (Passiflora spp.) plants (R0) were obtained which express a non-translatable transgenic RNA corresponding to the 3' region of the NIb gene and the 5' region of the CP gene, derived from the genome of a Brazilian isolate of Cowpea aphid-borne mosaic virus (CABMV). The transgenic plants were propagated by stem cuttings and challenged by sap inoculation with isolates CABMV-MG1 and CABMV-PE1. One transgenic plant (TE5-10) was resistant to the isolate CABMV-MG1, but susceptible to CABMV-PE1. The remaining transgenic plants developed systemic symptoms, equal to non-transformed plants, when inoculated with either isolate. The absence of virus in TE5-10 plants was confirmed by indirect ELISA. Transcription analysis of the transgene demonstrated that the TE5-10 plant did not accumulate transgenic mRNA, even before inoculation. After inoculation, viral RNA was only detected in plants inoculated with CABMV-PE1. These results confirm that the transgenic plant TE5-10 is resistant to isolate CABMV-MG1, and suggest that the resistance mechanism is post-transcriptional gene silencing, which is already activated in the transgenic plants before virus inoculation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chondrogenesis is a co-ordinated differentiation process in which mesenchymal cells condensate, differentiate into chondrocytes and begin to secrete molecules that form the extracellular matrix. It is regulated in a spatio-temporal manner by cellular interactions and growth and differentiation factors that modulate cellular signalling pathways and transcription of specific genes. Moreover, post-transcriptional regulation by microRNAs (miRNAs) has appeared to play a central role in diverse biological processes, but their role in skeletal development is not fully understood. Mesenchymal stromal cells (MSCs) are multipotent cells present in a variety of adult tissues, including bone marrow and adipose tissue. They can be isolated, expanded and, under defined conditions, induced to differentiate into multiple cell lineages including chondrocytes, osteoblasts and adipocytes in vitro and in vivo. Owing to their intrinsic capability to self-renew and differentiate into functional cell types, MSCs provide a promising source for cell-based therapeutic strategies for various degenerative diseases, such as osteoarthritis (OA). Due to the potential therapeutic applications, it is of importance to better understand the MSC biology and the regulatory mechanisms of their differentiation. In this study, an in vitro assay for chondrogenic differentiation of mouse MSCs (mMSCs) was developed for the screening of various factors for their chondrogenic potential. Conditions were optimized for pellet cultures by inducing mMSC with different bone morphogenetic proteins (BMPs) that were selected based on their known chondrogenic relevance. Characterization of the surface epitope profile, differentiation capacity and molecular signature of mMSCs illustrated the importance of cell population composition and the interaction between different populations in the cell fate determination and differentiation of MSCs. Regulation of Wnt signalling activity by Wnt antagonist sFRP-1 was elucidated as a potential modulator of lineage commitment. Delta-like 1 (dlk1), a factor regulating adipogenesis and osteogenesis, was shown to exhibit stage-specific expression during embryonic chondrogenesis and identified as a novel regulator of chondrogenesis, possibly through mediating the effect of TGF-beta1. Moreover, miRNA profiling demonstrated that MSCs differentiating into a certain lineage exhibit a specific miRNA expression profile. The complex regulatory network between miRNAs and transcription factors is suggested to play a crucial role in fine-tuning the differentiation of MSCs. These results demonstrate that commitment of mesenchymal stromal cells and further differentiation into specific lineages is regulated by interactions between MSCs, various growth and transcription factors, and miRNA-mediated translational repression of lineage-specific genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When in competition with cotton, Amaranthus retroflexus can cause high yield losses. Due to the limited availability of selective herbicides registered for post emergence control of this weed, the same herbicides have been used repeated times over the last few years, which may have selected resistant biotypes. Biotypes of A. retroflexus collected from the main areas of cotton cultivation in Brazil were submitted to dose-response trials, by applying the herbicides trifloxysulfuron-sodium and pyrithiobac-sodium in doses equivalent to 0, ¼, ½, 1, 2 and 4 times the recommended rates. Resistance to ALS inhibitors was confirmed in biotypes of A. retroflexus. Biotype MS 2 from Mato Grosso do Sul, was cross-resistant to both trifloxysulfuron-sodium and pyrithiobac-sodium, while biotype MS 1 was resistant to trifloxysulfuron-sodium only. Likewise, singular and cross resistance was also confirmed in biotypes from Goiás (GO 3, GO 4 and GO 6), in relation to trifloxysulfuron­sodium and pyrithiobac-sodium. One biotype from Mato Grosso (MT 13) was not resistant to any of the ALS inhibitors evaluated in this work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper reviews the application of patch-clamp principles to the detection and measurement of macromolecular translocation along the nuclear pores. We demonstrate that the tight-seal 'gigaseal' between the pipette tip and the nuclear membrane is possible in the presence of fully operational nuclear pores. We show that the ability to form a gigaseal in nucleus-attached configurations does not mean that only the activity of channels from the outer membrane of the nuclear envelope can be detected. Instead, we show that, in the presence of fully operational nuclear pores, it is likely that the large-conductance ion channel activity recorded derives from the nuclear pores. We conclude the technical section with the suggestion that the best way to demonstrate that the nuclear pores are responsible for ion channel activity is by showing with fluorescence microscopy the nuclear translocation of ions and small molecules and the exclusion of the same from the cisterna enclosed by the two membranes of the envelope. Since transcription factors and mRNAs, two major groups of nuclear macromolecules, use nuclear pores to enter and exit the nucleus and play essential roles in the control of gene activity and expression, this review should be useful to cell and molecular biologists interested in understanding how patch-clamp can be used to quantitate the translocation of such macromolecules into and out of the nucleus

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD), the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the e4 allele of the apolipoprotein E (APOE) gene (on chromosome 19) is the major susceptibility locus for the most common late onset AD (LOAD). Serotonin (5-hydroxytryptamine or 5-HT) is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT) gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s) of this 5-HTT gene-linked polymorphic region (5-HTTLPR) is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The treatment of some mesenchymal malignancies has made significant gains over the past few decades with the development of effective systemic therapies. In contrast, the treatment of chondrosarcoma has been limited to surgical resection, with the most significant prognostic indicators being surgical margins and histologic grade. We have reported that MMP-1/TIMP-1 gene expression serves to prognosticate for tumor recurrence in this group of patients. This led to the hypothesis that collagenase activity facilitates cell egression from the cartilaginous matrix. In the current study we examine the specificity of collagenase gene expression in archival human chondrosarcoma samples using semi-quantitative PCR. Messenger RNA was affinity extracted and subject to reverse transcription. The subsequent cDNA was amplified using novel primers and quantitated by densitometry. Ratios of gene expression were constructed and compared to disease-free survival. The data demonstrate that the significance of the MMP-1/TIMP-1 ratio as a predictor of recurrence is confirmed with a larger number of patients. Neutrophil collagenase or MMP-8 was observed in only 5 of 29 samples. Collagenase-3 or MMP-13 was observed in all samples but the level did not correlate with disease-free survival. Since the collagenases have similar activity for fibrillar collagens and cleave the peptide in the same location, post-transcriptional regulatory mechanisms may account for the observed specificity. The determination of the MMP-1/TIMP-1 gene expression ratio not only serves to identify those patients at risk for recurrence but may also serve as a novel therapeutic avenue as an adjunct to surgical resection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.