500 resultados para portfolios
Resumo:
Préface My thesis consists of three essays where I consider equilibrium asset prices and investment strategies when the market is likely to experience crashes and possibly sharp windfalls. Although each part is written as an independent and self contained article, the papers share a common behavioral approach in representing investors preferences regarding to extremal returns. Investors utility is defined over their relative performance rather than over their final wealth position, a method first proposed by Markowitz (1952b) and by Kahneman and Tversky (1979), that I extend to incorporate preferences over extremal outcomes. With the failure of the traditional expected utility models in reproducing the observed stylized features of financial markets, the Prospect theory of Kahneman and Tversky (1979) offered the first significant alternative to the expected utility paradigm by considering that people focus on gains and losses rather than on final positions. Under this setting, Barberis, Huang, and Santos (2000) and McQueen and Vorkink (2004) were able to build a representative agent optimization model which solution reproduced some of the observed risk premium and excess volatility. The research in behavioral finance is relatively new and its potential still to explore. The three essays composing my thesis propose to use and extend this setting to study investors behavior and investment strategies in a market where crashes and sharp windfalls are likely to occur. In the first paper, the preferences of a representative agent, relative to time varying positive and negative extremal thresholds are modelled and estimated. A new utility function that conciliates between expected utility maximization and tail-related performance measures is proposed. The model estimation shows that the representative agent preferences reveals a significant level of crash aversion and lottery-pursuit. Assuming a single risky asset economy the proposed specification is able to reproduce some of the distributional features exhibited by financial return series. The second part proposes and illustrates a preference-based asset allocation model taking into account investors crash aversion. Using the skewed t distribution, optimal allocations are characterized as a resulting tradeoff between the distribution four moments. The specification highlights the preference for odd moments and the aversion for even moments. Qualitatively, optimal portfolios are analyzed in terms of firm characteristics and in a setting that reflects real-time asset allocation, a systematic over-performance is obtained compared to the aggregate stock market. Finally, in my third article, dynamic option-based investment strategies are derived and illustrated for investors presenting downside loss aversion. The problem is solved in closed form when the stock market exhibits stochastic volatility and jumps. The specification of downside loss averse utility functions allows corresponding terminal wealth profiles to be expressed as options on the stochastic discount factor contingent on the loss aversion level. Therefore dynamic strategies reduce to the replicating portfolio using exchange traded and well selected options, and the risky stock.
Resumo:
Four secondary school teachers were involved in this case study. Individual interviews, group reflective sessions, and participant portfolios were transcribed verbatim and analyzed. The use of the portfolio in the secondary school classroom was then discussed in relation to emergent themes. These themes included teacher attitude, portfolio structure, portfolio purpose, challenges, effect, and professional development. Teachers were able to individualize the portfolio structure to meet both program and students' needs. The portfolio structure enabled both teachers and students to assume control over the learning process. The portfolio informed teachers about their teaching. This, in tum, challenged them to reflect on their teaching practices and enabled them to redesign curriculum implementation. A collaborative professional development structure fostered a learning environment that enabled teachers to experience success, despite the challenges that they inevitably encountered. These findings were related to contemporary literature. Finally, implications for theory and practice related to portfolio use in the secondary school classroom and professional development for secondary school teachers were considered.
Resumo:
This thesis examines the performance of Canadian fixed-income mutual funds in the context of an unobservable market factor that affects mutual fund returns. We use various selection and timing models augmented with univariate and multivariate regime-switching structures. These models assume a joint distribution of an unobservable latent variable and fund returns. The fund sample comprises six Canadian value-weighted portfolios with different investing objectives from 1980 to 2011. These are the Canadian fixed-income funds, the Canadian inflation protected fixed-income funds, the Canadian long-term fixed-income funds, the Canadian money market funds, the Canadian short-term fixed-income funds and the high yield fixed-income funds. We find strong evidence that more than one state variable is necessary to explain the dynamics of the returns on Canadian fixed-income funds. For instance, Canadian fixed-income funds clearly show that there are two regimes that can be identified with a turning point during the mid-eighties. This structural break corresponds to an increase in the Canadian bond index from its low values in the early 1980s to its current high values. Other fixed-income funds results show latent state variables that mimic the behaviour of the general economic activity. Generally, we report that Canadian bond fund alphas are negative. In other words, fund managers do not add value through their selection abilities. We find evidence that Canadian fixed-income fund portfolio managers are successful market timers who shift portfolio weights between risky and riskless financial assets according to expected market conditions. Conversely, Canadian inflation protected funds, Canadian long-term fixed-income funds and Canadian money market funds have no market timing ability. We conclude that these managers generally do not have positive performance by actively managing their portfolios. We also report that the Canadian fixed-income fund portfolios perform asymmetrically under different economic regimes. In particular, these portfolio managers demonstrate poorer selection skills during recessions. Finally, we demonstrate that the multivariate regime-switching model is superior to univariate models given the dynamic market conditions and the correlation between fund portfolios.
Resumo:
This thesis investigates the pricing effects of idiosyncratic moments. We document that idiosyncratic moments, namely idiosyncratic skewness and idiosyncratic kurtosis vary over time. If a factor/characteristic is priced, it must show minimum variation to be correlated with stock returns. Moreover, we can identify two structural breaks in the time series of idiosyncratic kurtosis. Using a sample of US stocks traded on NYSE, AMEX and NASDAQ markets from January 1970 to December 2013, we run Fama-MacBeth test at the individual stock level. We document a negative and significant pricing effect of idiosyncratic skewness, consistent with the finding of Boyer et al. (2010). We also report that neither idiosyncratic volatility nor idiosyncratic kurtosis are consistently priced. We run robustness tests using different model specifications and period sub-samples. Our results are robust to the different factors and characteristics usually included in the Fama-MacBeth pricing tests. We also split first our sample using endogenously determined structural breaks. Second, we divide our sample into three equal sub-periods. The results are consistent with our main findings suggesting that expected returns of individual stocks are explained by idiosyncratic skewness. Both idiosyncratic volatility and idiosyncratic kurtosis are irrelevant to asset prices at the individual stock level. As an alternative method, we run Fama-MacBeth tests at the portfolio level. We find that idiosyncratic skewness is not significantly related to returns on idiosyncratic skewness-sorted portfolios. However, it is significant when tested against idiosyncratic kurtosis sorted portfolios.
Resumo:
This thesis investigates the pricing effects of idiosyncratic moments. We document that idiosyncratic moments, namely idiosyncratic skewness and idiosyncratic kurtosis vary over time. If a factor/characteristic is priced, it must show minimum variation to be correlated with stock returns. Moreover, we can identify two structural breaks in the time series of idiosyncratic kurtosis. Using a sample of US stocks traded on NYSE, AMEX and NASDAQ markets from January 1970 to December 2013, we run Fama-MacBeth test at the individual stock level. We document a negative and significant pricing effect of idiosyncratic skewness, consistent with the finding of Boyer et al. (2010). We also report that neither idiosyncratic volatility nor idiosyncratic kurtosis are consistently priced. We run robustness tests using different model specifications and period sub-samples. Our results are robust to the different factors and characteristics usually included in the Fama-MacBeth pricing tests. We also split first our sample using endogenously determined structural breaks. Second, we divide our sample into three equal sub-periods. The results are consistent with our main findings suggesting that expected returns of individual stocks are explained by idiosyncratic skewness. Both idiosyncratic volatility and idiosyncratic kurtosis are irrelevant to asset prices at the individual stock level. As an alternative method, we run Fama-MacBeth tests at the portfolio level. We find that idiosyncratic skewness is not significantly related to returns on idiosyncratic skewness-sorted portfolios. However, it is significant when tested against idiosyncratic kurtosis sorted portfolios.
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. the conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. the inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
Le Programme de formation de l’école québécoise situe l’élève au cœur de ses apprentissages. L’enseignant peut faciliter le développement des compétences en offrant une rétroaction permettant à l’élève de progresser dans ses apprentissages. Il est difficile pour les enseignants de faire des annotations pertinentes et efficaces en mathématique, car l’accent est mis sur le concept travaillé et non sur la démarche mathématique. C’est pourquoi, nous avons porté notre regard sur l’incidence que peut avoir l’enseignement explicite des stratégies ainsi que sur les annotations faites par l’enseignant sur les copies des élèves en ce qui a trait au développement de leurs compétences à résoudre des problèmes complexes en mathématique. Nous avons opté pour une recherche qualitative et collaborative pour vivre un échange avec l’enseignant et vivre une interinfluence entre le praticien et le chercheur. La qualité des sujets a été favorisée. La technique d’échantillonnage retenue pour le choix de l’enseignant a été celle de cas exemplaires, tandis que celle que nous avons choisie pour les élèves était l’échantillonnage intentionnel critérié. La recherche a duré du mois de novembre au mois de mai de l’année scolaire 2008-2009. Comme instruments de cueillette de données, nous avons opté pour des entrevues avec l’enseignant et des mini-entrevues avec les élèves à deux moments de la recherche. Nous avons consulté les travaux corrigés des élèves dans leur portfolio. Notre étude fait ressortir l’apport de l’enseignement stratégique de la démarche mathématique. Les résultats précisent que les annotations de type méthodologique ont été celles qui ont été les plus utilisées et ont permis une meilleure compréhension chez l’élève. De plus, elles favorisent le transfert d’une situation à l’autre et permettent à l’élève d’obtenir de meilleurs résultats.
Resumo:
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011.
Resumo:
Spätestens seit der Formulierung der modernen Portfoliotheorie durch Harry Markowitz (1952) wird den aktiven Portfoliomanagementstrategien besondere Aufmerksamkeit in Wissenschaft und Anlagepraxis gewidmet. Diese Arbeit ist im Schnittstellenbereich zwischen neoklassischer Kapitalmarkttheorie und technischer Analyse angesiedelt. Es wird untersucht, inwieweit eine passive Buy&Hold-Strategie, die als einzige im Einklang mit der Effizienzmarkthypothese nach Fama (1970) steht, durch Verwendung von aktiven Strategien geschlagen werden kann. Der Autor präsentiert einen Wavelet-basierten Ansatz für die Analyse der Finanzzeitreihen. Die Wavelet-Transformation wird als ein mathematisches Datenaufbereitungstool herangezogen und ermöglicht eine Multiskalendarstellung einer Datenreihe, durch das Aufspalten dieser in eine Approximationszeitreihe und eine Detailszeitreihe, ohne dass dadurch Informationen verloren gehen. Diese Arbeit beschränkt sich auf die Verwendung der Daubechies Wavelets. Die Multiskalendarstellung dient als Grundlage für die Entwicklung von zwei technischen Indikatoren. Der Wavelet Stochastik Indikator greift auf die Idee des bekannten Stochastik-Indikators zurück und verwendet nicht mehr die Kurszeitreihe, sondern die Approximationszeitreihe als Input. Eine auf diesem Indikator basierende Investmentstrategie wird umfangreicher Sensitivitätsanalyse unterworfen, die aufzeigt, dass eine Buy&Hold-Strategie durchaus outperformt werden kann. Die Idee des Momentum-Indikators wird durch den Wavelet Momentum Indikator aufgegriffen, welcher die Detailszeitreihen als Input heranzieht. Im Rahmen der Sensitivitätsanalyse einer Wavelet Momentum Strategie wird jedoch die Buy&Hold -Strategie nicht immer geschlagen. Ein Wavelet-basiertes Prognosemodell verwendet ähnlich wie die technischen Indikatoren die Multiskalendarstellung. Die Approximationszeitreihen werden dabei durch das Polynom 2. Grades und die Detailszeitreihen durch die Verwendung der Sinusregression extrapoliert. Die anschließende Aggregation der extrapolierten Zeitreihen führt zu prognostizierten Wertpapierkursen. Kombinierte Handelsstrategien zeigen auf, wie Wavelet Stochastik Indikator, Wavelet Momentum Indikator und das Wavelet-basierte Prognosemodell miteinander verknüpft werden können. Durch die Verknüpfung einzelner Strategien gelingt es, die Buy&Hold-Strategie zu schlagen. Der letzte Abschnitt der Arbeit beschäftigt sich mit der Modellierung von Handelssystem-portfolios. Angestrebt wird eine gleichzeitige Diversifikation zwischen Anlagen und Strategien, die einer ständigen Optimierung unterworfen wird. Dieses Verfahren wird als ein systematischer, an bestimmte Optimierungskriterien gebundener Investmentprozess verstanden, mit welchem es gelingt, eine passive Buy&Hold-Strategie zu outperformen. Die Arbeit stellt eine systematische Verknüpfung zwischen der diskreten Wavelet Transformation und technisch quantitativen Investmentstrategien her. Es werden auch die Problemfelder der durchaus viel versprechenden Verwendung der Wavelet Transformation im Rahmen der technischen Analyse beleuchtet.
Resumo:
Diese Arbeit weist Momentum-Renditen für europäische Aktien im Zeitraum von 1991 bis 2010 nach, die – je nach Top/Flop-Prozentsatz – vor Kosten zwischen 6 und 19% p.a. liegen. Gleichzeitig liegen mit hohen Standardabweichungen, negativen Schiefe-Werten und hohen Drawdowns drei wesentliche Risikofaktoren vor. Für die Kernuntersuchungen des Top/Flop-Wertes von 5% treten die höchsten Momentum-Renditen von mehr als 10% p.a. für Ranking-Perioden von 80 bis 100 und Holding-Perioden von 60 bis 90 Handelstagen auf. Grundsätzlich sind die extremsten Aktien der Ranking-Periode entscheidend für die Ausprägung des Momentum-Effekts. Gleichzeitig steigen mit zunehmender Eingrenzung des Top/Flop-Wertes die Risiken, was eine Erklärung hoher Momentum-Renditen aus Sicht der Risikoaversions-Theorie nahelegt. Auch die Berücksichtigung zusätzlicher Filterbedingungen (Gleitende Durchschnitte, Handelsvolumen, Low Volatility) ermöglicht leicht höhere Momentum-Renditen bei entsprechend höheren Risiken. Zwischen dem Momentum-Effekt und dem Auftreten von Kurslücken besteht dagegen kein klarer Zusammenhang. Für die praktische Anwendung sind Momentum-Strategien mit dynamischer Positionsverwaltung während der Haltedauer interessant. Untersucht wurden Strategien anhand der eigens programmierten Simulationsverfahren Stopout und Castout sowie eines kombinierten Verfahrens. Im Ergebnis sind – je nach Präferenz des Investors – das Castout- und das kombinierte Verfahren optimal. Für das Rebalancing der Portfolios empfiehlt es sich, zu den entsprechenden Terminen jeweils nur die Short-Seite auf den Startwert zurückzusetzen. Weiterhin zeigen die Untersuchungen, dass deutliche Long-Übergewichtungen bei Momentum-Strategien grundsätzlich von Vorteil sind. Potenzielle Verbesserungen der Ergebnisse können durch weitere Stopp-Abstände, eine Verringerung des Top/Flop-Wertes oder eine längere Ranking-Periode erzielt werden. Weiterhin sind für die Praxis Long-only-Strategien auf Basis von Doppelranking-Verfahren attraktiv, bei denen das Zweitranking nach Standardabweichung oder Rendite/Standardabweichungs-Ratio erfolgt.
Resumo:
Recientemente, el gobierno nacional radicó un proyecto de reforma financiera en el que se propone flexibilizar la regulación de los Fondos de Pensiones. En particular, se propone que los agentes pueden escoger la composición del portafolio en el que están invertidos sus ahorros pensionales. Para evaluar los posibles efectos de este cambio sobre el bienestar de los agentes, este trabajo analiza las decisiones de inversión de un individuo con función de utilidad con aversión absoluta al riesgo constante (CARA) frente a la Teoría de la diversificación del portafolio. Adicionalmente, se realiza un ejercicio contrafactual con el fin de calcular cual hubiera sido el valor del activo pensional para diferentes individuos si la legislación propuesta por el gobierno hubiera aplicado para el período 1980-2008. Este ejercicio se realiza utilizando información de las Bolsas de Valores de Colombia y la Encuesta de Calidad de Vida 2003 (ECV 2003), siguiendo la metodología de Herscovich (2003) los resultados del análisis teórico sugieren que ante un mayor valor acumulado en las cuentas de pensión, los individuos disminuyen su exposición ante el riesgo en sus portafolios. Así, la composición del portafolio debe estar más concentrada en renta variable para los agentes jóvenes y más concentrada en renta fija para los agentes viejos. Por otro lado, el ejercicio contrafactual, indica que la mejor decisión habría sido invertir todo el portafolio en activos de renta variable. Este contraste en los resultados llama la atención acerca de dos problemas: Primero, es posible que la estrategia que maximiza la utilidad ex-ante de los individuos no sea la misma que maximiza el valor de su pensión. Segundo, el ejercicio presentado parte del supuesto de que no hay información adicional que permita suponer cambios de tendencia o de volatilidad en las rentabilidades de los distintos activos financieros. No obstante, es claro que los especialistas en el mercado financiero cuentan con información suficiente para predecir este tipo de eventos. Por esta razón, el estudio sugiere que el papel de la asesoría financiera a los ahorradores es fundamental para permitir un cambio al sistema multifondos, puesto que el incremento en las opciones de inversión no conduce a un incremento en el bienestar de los individuos en ausencia de información. Adicionalmente, al comparar la evolución de las cuentas de pensión con los porcentajes históricos y con el sistema multifondos, se encuentra un mejor desempeño cuando el porcentaje de inversión en activos de renta variable es mayor que el actual, lo cual sugiere un incremento en la restricción actual de inversión de activos de renta variable para mejorar el desempeño de los fondos.