935 resultados para plasmons, dark field microscopy, gold particles, fluorescence enhancement


Relevância:

50.00% 50.00%

Publicador:

Resumo:

In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this Letter we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Topical photodynamic therapy (PDT) has been applied to almost all types of nonmelanoma skin cancer and numerous superficial benign skin disorders. Strategies to improve the accumulation of photosensitizer in the skin have been studied in recent years. Although the hydrophilic phthalocyanine zinc compound, zinc phthalocyanine tetrasulfonate (ZnPcSO4) has shown high photodynamic efficiency and reduced phototoxic side effects in the treatment of brain tumors and eye conditions, its use in topical skin treatment is currently limited by its poor skin penetration. In this study, nanodispersions of monoolein (MO)-based liquid crystalline phases were studied for their ability to increase ZnPcSO4 uptake by the skin. Lamellar, hexagonal and cubic crystalline phases were prepared and identified by polarizing light microscopy, and the nanodispersions were analyzed by dynamic light scattering. In vitro skin penetration studies were performed using a Franz's cell apparatus, and the skin uptake was evaluated in vivo in hairless mice. Aqueous dispersions of cubic and hexagonal phases showed particles of nanometer size, approximately 224 +/- 10 nm and 188 +/- 10 nm, respectively. In vitro skin retention experiments revealed higher fluorescence from the ZnPcSO4 in deeper skin layers when this photosensitizer was loaded in the hexagonal nanodispersion system when compared to both the cubic phase nanoparticles and the bulk crystalline phases (lamellar, cubic and hexagonal). The hexagonal nanodispersion showed a similar penetration behavior in animal tests. These results are important findings, suggesting the development of MO liquid crystal nanodispersions as potential delivery systems to enhance the efficacy of topical PDT.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We describe a systematic investigation by the discrete dipole approximation on the optical properties of silver (Ag) and gold (Au) nanocubes as a function of the edge length in the 20-100 nm range. Our results showed that, as the nanocube size increased, the plasmon resonance modes shifted to higher wavelengths, the contribution from scattering to the extinction increased, and the quadrupole modes became more intense in the spectra. The electric field amplitudes at the surface of the nanocubes were calculated considering 514, 633 and 785 nm as the excitation wavelengths. While Ag nanocubes displayed the highest electric field amplitudes (vertical bar E vertical bar(max)) when excited at 514 nm, the Au nanocubes displayed higher vertical bar E vertical bar(max) values than Ag, for all sizes investigated, when the excitation wavelength was either 633 or 785 nm. The variations in vertical bar E vertical bar(max) as a function of size for both Ag and Au nanocubes could be explained based on the relative position of the surface plasmon resonance peak relative to the wavelength of the incoming electromagnetic wave. Our results show that not only size and composition, but also the excitation wavelength, can play an important role over the maximum near-field amplitudes values generated at the surface of the nanocubes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We investigate theoretical and observational aspects of a time-dependent parameterization for the dark energy equation of state w(z), which is a well behaved function of the redshift z over the entire cosmological evolution, i.e., z is an element of [-1, infinity). By using a theoretical algorithm of constructing the quintes-sence potential directly from the w(z) function, we derive and discuss the general features of the resulting potential for the cases in which dark energy is separately conserved and when it is coupled to dark matter. Since the parameterization here discussed allows us to divide the parametric plane in defined regions associated to distinct classes of dark energy models, we use some of the most recent observations from type Ia supernovae, baryon acoustic oscillation peak and Cosmic Microwave Background shift parameter to check which class is observationally preferred. We show that the largest portion of the confidence contours lies into the region corresponding to a possible crossing of the so-called phantom divide line at some point of the cosmic evolution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We discuss two Lagrangian interacting dark energy models in the context of the holographic principle. The potentials of the interacting fields are constructed. The models are compared with CMB distance information, baryonic acoustic oscillations, lookback time and the Constitution supernovae sample. For both models, the results are consistent with a nonvanishing interaction in the dark sector of the Universe and the sign of coupling is consistent with dark energy decaying into dark matter, alleviating the coincidence problem-with more than 3 standard deviations of confidence for one of them. However, this is because the noninteracting holographic dark energy model is a bad fit to the combination of data sets used in this work as compared to the cosmological constant with cold dark matter model, so that one needs to introduce the interaction in order to improve this model.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The research interest of this study is to investigate surface immobilization strategies for proteins and other biomolecules by the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) technique. The recrystallization features of the S-layer proteins and the possibility of combining the S-layer lattice arrays with other functional molecules make this protein a prime candidate for supramolecular architectures. The recrystallization behavior on gold or on the secondary cell wall polymer (SCWP) was recorded by SPR. The optical thicknesses and surface densities for different protein layers were calculated. In DNA hybridization tests performed in order to discriminate different mismatches, recombinant S-layer-streptavidin fusion protein matrices showed their potential for new microarrays. Moreover, SCWPs coated gold chips, covered with a controlled and oriented assembly of S-layer fusion proteins, represent an even more sensitive fluorescence testing platform. Additionally, S-layer fusion proteins as the matrix for LHCII immobilization strongly demonstrate superiority over routine approaches, proving the possibility of utilizing them as a new strategy for biomolecular coupling. In the study of the SPFS hCG immunoassay, the biophysical and immunological characteristics of this glycoprotein hormone were presented first. After the investigation of the effect of the biotin thiol dilution on the coupling efficiently, the interfacial binding model including the appropriate binary SAM structure and the versatile streptavidin-biotin interaction was chosen as the basic supramolecular architecture for the fabrication of a SPFS-based immunoassay. Next, the affinity characteristics between different antibodies and hCG were measured via an equilibrium binding analysis, which is the first example for the titration of such a high affinity interaction by SPFS. The results agree very well with the constants derived from the literature. Finally, a sandwich assay and a competitive assay were selected as templates for SPFS-based hCG detection, and an excellent LOD of 0.15 mIU/ml was attained via the “one step” sandwich method. Such high sensitivity not only fulfills clinical requirements, but is also better than most other biosensors. Fully understanding how LHCII complexes transfer the sunlight energy directionally and efficiently to the reaction center is potentially useful for constructing biomimetic devices as solar cells. After the introduction of the structural and the spectroscopic features of LHCII, different surface immobilization strategies of LHCII were summarized next. Among them the strategy based on the His-tag and the immobilized metal (ion) affinity chromatography (IMAC) technique were of great interest and resulted in different kinds of home-fabricated His-tag chelating chips. Their substantial protein coupling capacity, maintenance of high biological activity and a remarkably repeatable binding ability on the same chip after regeneration was demonstrated. Moreover, different parameters related to the stability of surface coupled reconstituted complexes, including sucrose, detergent, lipid, oligomerization, temperature and circulation rate, were evaluated in order to standardize the most effective immobilization conditions. In addition, partial lipid bilayers obtained from LHCII contained proteo-liposomes fusion on the surface were observed by the QCM technique. Finally, the inter-complex energy transfer between neighboring LHCIIs on a gold protected silver surface by excitation with a blue laser (λ = 473nm) was recorded for the first time, and the factors influencing the energy transfer efficiency were evaluated.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

“Plasmon” is a synonym for collective oscillations of the conduction electrons in a metal nanoparticle (excited by an incoming light wave), which cause strong optical responses like efficient light scattering. The scattering cross-section with respect to the light wavelength depends not only on material, size and shape of the nanoparticle, but also on the refractive index of the embedding medium. For this reason, plasmonic nanoparticles are interesting candidates for sensing applications. Here, two novel setups for rapid spectral investigations of single nanoparticles and different sensing experiments are presented.rnrnPrecisely, the novel setups are based on an optical microscope operated in darkfield modus. For the fast single particle spectroscopy (fastSPS) setup, the entrance pinhole of a coupled spectrometer is replaced by a liquid crystal device (LCD) acting as spatially addressable electronic shutter. This improvement allows the automatic and continuous investigation of several particles in parallel for the first time. The second novel setup (RotPOL) usesrna rotating wedge-shaped polarizer and encodes the full polarization information of each particle within one image, which reveals the symmetry of the particles and their plasmon modes. Both setups are used to observe nanoparticle growth in situ on a single-particle level to extract quantitative data on nanoparticle growth.rnrnUsing the fastSPS setup, I investigate the membrane coating of gold nanorods in aqueous solution and show unequivocally the subsequent detection of protein binding to the membrane. This binding process leads to a spectral shift of the particles resonance due to the higher refractive index of the protein compared to water. Hence, the nanosized addressable sensor platform allows for local analysis of protein interactions with biological membranes as a function of the lateral composition of phase separated membranes.rnrnThe sensitivity on changes in the environmental refractive index depends on the particles’ aspect ratio. On the basis of simulations and experiments, I could present the existence of an optimal aspect ratio range between 3 and 4 for gold nanorods for sensing applications. A further sensitivity increase can only be reached by chemical modifications of the gold nanorods. This can be achieved by synthesizing an additional porous gold cage around the nanorods, resulting in a plasmon sensitivity raise of up to 50 % for those “nanorattles” compared to gold nanorods with the same resonance wavelength. Another possibility isrnto coat the gold nanorods with a thin silver shell. This reduces the single particle’s resonance spectral linewidth about 30 %, which enlarges the resolution of the observable shift. rnrnThis silver coating evokes the interesting effect of reducing the ensemble plasmon linewidth by changing the relation connecting particle shape and plasmon resonance wavelength. This change, I term plasmonic focusing, leads to less variation of resonance wavelengths for the same particle size distribution, which I show experimentally and theoretically.rnrnIn a system of two coupled nanoparticles, the plasmon modes of the transversal and longitudinal axis depend on the refractive index of the environmental solution, but only the latter one is influenced by the interparticle distance. I show that monitoring both modes provides a self-calibrating system, where interparticle distance variations and changes of the environmental refractive index can be determined with high precision.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Rapid and sensitive detection of chemical and biological analytes becomes increasingly important in areas such as medical diagnostics, food control and environmental monitoring. Optical biosensors based on surface plasmon resonance (SPR) and optical waveguide spectroscopy have been extensively pushed forward in these fields. In this study, we combine SPR, surface plasmon-enhanced fluorescence spectroscopy (SPFS) and optical waveguide spectroscopy with hydrogel thin film for highly sensitive detection of molecular analytes.rnrnA novel biosensor based on SPFS which was advanced through the excitation of long range surface plasmons (LRSPs) is reported in this study. LRSPs are special surface plasmon waves propagating along thin metal films with orders of magnitude higher electromagnetic field intensity and lower damping than conventional SPs. Therefore, their excitation on the sensor surface provides further increased fluorescence signal. An inhibition immunoassay based on LRSP-enhanced fluorescence spectroscopy (LRSP-FS) was developed for the detection of aflatoxin M1 (AFM1) in milk. The biosensor allowed for the detection of AFM1 in milk at concentrations as low as 0.6 pg mL-1, which is about two orders of magnitude lower than the maximum AFM1 residue level in milk stipulated by the European Commission legislation.rnrnIn addition, LRSPs probe the medium adjacent to the metallic surface with more extended evanescent field than regular SPs. Therefore, three-dimensional binding matrices with up to micrometer thickness have been proposed for the immobilization of biomolecular recognition elements with large surface density that allows to exploit the whole evanescent field of LRSP. A photocrosslinkable carboxymethyl dextran (PCDM) hydrogel thin film is used as a binding matrix, and it is applied for the detection of free prostate specific antigen (f-PSA) based on the LRSP-FS and sandwich immunoassay. We show that this approach allows for the detection of f-PSA at low femto-molar range, which is approximately four orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.rnrnHowever, a three dimensional hydrogel binding matrix with micrometer thickness can also serve as an optical waveguide. Based on the measurement of binding-induced refractive index changes, a hydrogel optical waveguide spectroscopy (HOWS) is reported for a label-free biosensor. This biosensor is implemented by using a SPR optical setup in which a carboxylated poly(N-isoproprylacrylamide) (PNIPAAm) hydrogel film is attached on a metallic surface and modified by protein catcher molecules. Compared to regular SPR biosensor with thiol self-assembled monolayer (SAM), HOWS provides an order of magnitude improved resolution in the refractive index measurements and enlarged binding capacity owing to its low damping and large swelling ratio, respectively. A model immunoassay experiment revealed that HOWS allowed detection of IgG molecules with a 10 pM limit of detection (LOD) that was five-fold lower than that achieved for SPR with thiol SAM. For the high capacity hydrogel matrix, the affinity binding was mass transport limited.rnrnThe mass transport of target molecules to the sensor surface can play as critical a role as the chemical reaction itself. In order to overcome the diffusion-limited mass transfer, magnetic iron oxide nanoparticles were employed. The magnetic nanoparticles (MNPs) can serve both as labels providing enhancement of the refractive index changes, and “vehicles” for rapidly delivering the analytes from sample solution to an SPR sensor surface with a gradient magnetic field. A model sandwich assay for the detection of β human chorionic gonadotropin (βhCG) has been utilized on a gold sensor surface with metallic diffraction grating structure supporting the excitation of SPs. Various detection formats including a) direct detection, b) sandwich assay, c) MNPs immunoassay without and d) with applied magnetic field were compared. The results show that the highly-sensitive MNPs immunoassay improves the LOD on the detection of βhCG by a factor of 5 orders of magnitude with respect to the direct detection.rn

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recently, the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) was developed as a kinetic analysis and a detection method with dual- monitoring of the change of reflectivity and fluorescence signal for the interfacial phenomenon. A fundamental study of PNA and DNA interaction at the surface using surface plasmon fluorescence spectroscopy (SPFS) will be investigated in studies. Furthermore, several specific conditions to influence on PNA/DNA hybridization and affinity efficiency by monitoring reflective index changes and fluorescence variation at the same time will be considered. In order to identify the affinity degree of PNA/DNA hybridizaiton at the surface, the association constant (kon) and the dissociation constant (koff) will be obtained by titration experiment of various concentration of target DNA and kinetic investigation. In addition, for more enhancing the hybridization efficiency of PNA/DNA, a study of polarized electric field enhancement system will be introduced and performed in detail. DNA is well-known polyelectrolytes with naturally negative charged molecules in its structure. With polarized electrical treatment, applying DC field to the metal surface, which PNA probe would be immobilized at, negatively charged DNA molecules can be attracted by electromagnetic attraction force and manipulated to the close the surface area, and have more possibility to hybridize with probe PNA molecules by hydrogen bonding each corresponding base sequence. There are several major factors can be influenced on the hybridization efficiency.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study develops an automated analysis tool by combining total internal reflection fluorescence microscopy (TIRFM), an evanescent wave microscopic imaging technique to capture time-sequential images and the corresponding image processing Matlab code to identify movements of single individual particles. The developed code will enable us to examine two dimensional hindered tangential Brownian motion of nanoparticles with a sub-pixel resolution (nanoscale). The measured mean square displacements of nanoparticles are compared with theoretical predictions to estimate particle diameters and fluid viscosity using a nonlinear regression technique. These estimated values will be confirmed by the diameters and viscosities given by manufacturers to validate this analysis tool. Nano-particles used in these experiments are yellow-green polystyrene fluorescent nanospheres (200 nm, 500 nm and 1000 nm in diameter (nominal); 505 nm excitation and 515 nm emission wavelengths). Solutions used in this experiment are de-ionized (DI) water, 10% d-glucose and 10% glycerol. Mean square displacements obtained near the surface shows significant deviation from theoretical predictions which are attributed to DLVO forces in the region but it conforms to theoretical predictions after ~125 nm onwards. The proposed automation analysis tool will be powerfully employed in the bio-application fields needed for examination of single protein (DNA and/or vesicle) tracking, drug delivery, and cyto-toxicity unlike the traditional measurement techniques that require fixing the cells. Furthermore, this tool can be also usefully applied for the microfluidic areas of non-invasive thermometry, particle tracking velocimetry (PTV), and non-invasive viscometry.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Schwalbenberg II loess-paleosol sequence (LPS) denotes a key site for Marine Isotope Stage (MIS 3) in Western Europe owing to eight succeeding cambisols, which primarily constitute the Ahrgau Subformation. Therefore, this LPS qualifies as a test candidate for the potential of temporal high-resolution geochemical data obtained X-ray fluorescence (XRF) scanning of discrete samplesproviding a fast and non-destructive tool for determining the element composition. The geochemical data is first contextualized to existing proxy data such as magnetic susceptibility (MS) and organic carbon (Corg) and then aggregated to element log ratios characteristic for weathering intensity [LOG (Ca/Sr), LOG (Rb/Sr), LOG (Ba/Sr), LOG (Rb/K)] and dust provenance [LOG (Ti/Zr), LOG (Ti/Al), LOG (Si/Al)]. Generally, an interpretation of rock magnetic particles is challenged in western Europe, where not only magnetic enhancement but also depletion plays a role. Our data indicates leaching and top-soil erosion induced MS depletion at the Schwalbenberg II LPS. Besides weathering, LOG (Ca/Sr) is susceptible for secondary calcification. Thus, also LOG (Rb/Sr) and LOG (Ba/Sr) are shown to be influenced by calcification dynamics. Consequently, LOG (Rb/K) seems to be the most suitable weathering index identifying the Sinzig Soils S1 and S2 as the most pronounced paleosols for this site. Sinzig Soil S3 is enclosed by gelic gleysols and in contrast to S1 and S2 only initially weathered pointing to colder climate conditions. Also the Remagen Soils are characterized by subtle to moderate positive excursions in the weathering indices. Comparing the Schwalbenberg II LPS with the nearby Eifel Lake Sediment Archive (ELSA) and other more distant German, Austrian and Czech LPS while discussing time and climate as limiting factors for pedogenesis, we suggest that the lithologically determined paleosols are in-situ soil formations. The provenance indices document a Zr-enrichment at the transition from the Ahrgau to the Hesbaye Subformation. This is explained by a conceptual model incorporating multiple sediment recycling and sorting effects in eolian and fluvial domains.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A joint mesocosm experiment took place in June/July 2012 in Corsica (bay of Calvi, Stareso station;http://www.stareso.com/) as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 20 days period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseastareso2012.wordpress.com/.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This doctoral thesis explores some of the possibilities that near-field optics can bring to photovoltaics, and in particular to quantum-dot intermediate band solar cells (QD-IBSCs). Our main focus is the analytical optimization of the electric field distribution produced in the vicinity of single scattering particles, in order to produce the highest possible absorption enhancement in the photovoltaic medium in their surroundings. Near-field scattering structures have also been fabricated in laboratory, allowing the application of the previously studied theoretical concepts to real devices. We start by looking into the electrostatic scattering regime, which is only applicable to sub-wavelength sized particles. In this regime it was found that metallic nano-spheroids can produce absorption enhancements of about two orders of magnitude on the material in their vicinity, due to their strong plasmonic resonance. The frequency of such resonance can be tuned with the shape of the particles, allowing us to match it with the optimal transition energies of the intermediate band material. Since these metallic nanoparticles (MNPs) are to be inserted inside the cell photovoltaic medium, they should be coated by a thin insulating layer to prevent electron-hole recombination at their surface. This analysis is then generalized, using an analytical separation-of-variables method implemented in Mathematica7.0, to compute scattering by spheroids of any size and material. This code allowed the study of the scattering properties of wavelengthsized particles (mesoscopic regime), and it was verified that in this regime dielectric spheroids perform better than metallic. The light intensity scattered from such dielectric spheroids can have more than two orders of magnitude than the incident intensity, and the focal region in front of the particle can be shaped in several ways by changing the particle geometry and/or material. Experimental work was also performed in this PhD to implement in practice the concepts studied in the analysis of sub-wavelength MNPs. A wet-coating method was developed to self-assemble regular arrays of colloidal MNPs on the surface of several materials, such as silicon wafers, amorphous silicon films, gallium arsenide and glass. A series of thermal and chemical tests have been performed showing what treatments the nanoparticles can withstand for their embedment in a photovoltaic medium. MNPs arrays are then inserted in an amorphous silicon medium to study the effect of their plasmonic near-field enhancement on the absorption spectrum of the material. The self-assembled arrays of MNPs constructed in these experiments inspired a new strategy for fabricating IBSCs using colloidal quantum dots (CQDs). Such CQDs can be deposited in self-assembled monolayers, using procedures similar to those developed for the patterning of colloidal MNPs. The use of CQDs to form the intermediate band presents several important practical and physical advantages relative to the conventional dots epitaxially grown by the Stranski-Krastanov method. Besides, this provides a fast and inexpensive method for patterning binary arrays of QDs and MNPs, envisioned in the theoretical part of this thesis, in which the MNPs act as antennas focusing the light in the QDs and therefore boosting their absorption

Relevância:

50.00% 50.00%

Publicador:

Resumo:

La embriogénesis es el proceso mediante el cual una célula se convierte en un ser un vivo. A lo largo de diferentes etapas de desarrollo, la población de células va proliferando a la vez que el embrión va tomando forma y se configura. Esto es posible gracias a la acción de varios procesos genéticos, bioquímicos y mecánicos que interaccionan y se regulan entre ellos formando un sistema complejo que se organiza a diferentes escalas espaciales y temporales. Este proceso ocurre de manera robusta y reproducible, pero también con cierta variabilidad que permite la diversidad de individuos de una misma especie. La aparición de la microscopía de fluorescencia, posible gracias a proteínas fluorescentes que pueden ser adheridas a las cadenas de expresión de las células, y los avances en la física óptica de los microscopios han permitido observar este proceso de embriogénesis in-vivo y generar secuencias de imágenes tridimensionales de alta resolución espacio-temporal. Estas imágenes permiten el estudio de los procesos de desarrollo embrionario con técnicas de análisis de imagen y de datos, reconstruyendo dichos procesos para crear la representación de un embrión digital. Una de las más actuales problemáticas en este campo es entender los procesos mecánicos, de manera aislada y en interacción con otros factores como la expresión genética, para que el embrión se desarrolle. Debido a la complejidad de estos procesos, estos problemas se afrontan mediante diferentes técnicas y escalas específicas donde, a través de experimentos, pueden hacerse y confrontarse hipótesis, obteniendo conclusiones sobre el funcionamiento de los mecanismos estudiados. Esta tesis doctoral se ha enfocado sobre esta problemática intentando mejorar las metodologías del estado del arte y con un objetivo específico: estudiar patrones de deformación que emergen del movimiento organizado de las células durante diferentes estados del desarrollo del embrión, de manera global o en tejidos concretos. Estudios se han centrado en la mecánica en relación con procesos de señalización o interacciones a nivel celular o de tejido. En este trabajo, se propone un esquema para generalizar el estudio del movimiento y las interacciones mecánicas que se desprenden del mismo a diferentes escalas espaciales y temporales. Esto permitiría no sólo estudios locales, si no estudios sistemáticos de las escalas de interacción mecánica dentro de un embrión. Por tanto, el esquema propuesto obvia las causas de generación de movimiento (fuerzas) y se centra en la cuantificación de la cinemática (deformación y esfuerzos) a partir de imágenes de forma no invasiva. Hoy en día las dificultades experimentales y metodológicas y la complejidad de los sistemas biológicos impiden una descripción mecánica completa de manera sistemática. Sin embargo, patrones de deformación muestran el resultado de diferentes factores mecánicos en interacción con otros elementos dando lugar a una organización mecánica, necesaria para el desarrollo, que puede ser cuantificado a partir de la metodología propuesta en esta tesis. La metodología asume un medio continuo descrito de forma Lagrangiana (en función de las trayectorias de puntos materiales que se mueven en el sistema en lugar de puntos espaciales) de la dinámica del movimiento, estimado a partir de las imágenes mediante métodos de seguimiento de células o de técnicas de registro de imagen. Gracias a este esquema es posible describir la deformación instantánea y acumulada respecto a un estado inicial para cualquier dominio del embrión. La aplicación de esta metodología a imágenes 3D + t del pez zebra sirvió para desvelar estructuras mecánicas que tienden a estabilizarse a lo largo del tiempo en dicho embrión, y que se organizan a una escala semejante al del mapa de diferenciación celular y con indicios de correlación con patrones de expresión genética. También se aplicó la metodología al estudio del tejido amnioserosa de la Drosophila (mosca de la fruta) durante el cierre dorsal, obteniendo indicios de un acoplamiento entre escalas subcelulares, celulares y supracelulares, que genera patrones complejos en respuesta a la fuerza generada por los esqueletos de acto-myosina. En definitiva, esta tesis doctoral propone una estrategia novedosa de análisis de la dinámica celular multi-escala que permite cuantificar patrones de manera inmediata y que además ofrece una representación que reconstruye la evolución de los procesos como los ven las células, en lugar de como son observados desde el microscopio. Esta metodología por tanto permite nuevas formas de análisis y comparación de embriones y tejidos durante la embriogénesis a partir de imágenes in-vivo. ABSTRACT The embryogenesis is the process from which a single cell turns into a living organism. Through several stages of development, the cell population proliferates at the same time the embryo shapes and the organs develop gaining their functionality. This is possible through genetic, biochemical and mechanical factors that are involved in a complex interaction of processes organized in different levels and in different spatio-temporal scales. The embryogenesis, through this complexity, develops in a robust and reproducible way, but allowing variability that makes possible the diversity of living specimens. The advances in physics of microscopes and the appearance of fluorescent proteins that can be attached to expression chains, reporting about structural and functional elements of the cell, have enabled for the in-vivo observation of embryogenesis. The imaging process results in sequences of high spatio-temporal resolution 3D+time data of the embryogenesis as a digital representation of the embryos that can be further analyzed, provided new image processing and data analysis techniques are developed. One of the most relevant and challenging lines of research in the field is the quantification of the mechanical factors and processes involved in the shaping process of the embryo and their interactions with other embryogenesis factors such as genetics. Due to the complexity of the processes, studies have focused on specific problems and scales controlled in the experiments, posing and testing hypothesis to gain new biological insight. However, methodologies are often difficult to be exported to study other biological phenomena or specimens. This PhD Thesis is framed within this paradigm of research and tries to propose a systematic methodology to quantify the emergent deformation patterns from the motion estimated in in-vivo images of embryogenesis. Thanks to this strategy it would be possible to quantify not only local mechanisms, but to discover and characterize the scales of mechanical organization within the embryo. The framework focuses on the quantification of the motion kinematics (deformation and strains), neglecting the causes of the motion (forces), from images in a non-invasive way. Experimental and methodological challenges hamper the quantification of exerted forces and the mechanical properties of tissues. However, a descriptive framework of deformation patterns provides valuable insight about the organization and scales of the mechanical interactions, along the embryo development. Such a characterization would help to improve mechanical models and progressively understand the complexity of embryogenesis. This framework relies on a Lagrangian representation of the cell dynamics system based on the trajectories of points moving along the deformation. This approach of analysis enables the reconstruction of the mechanical patterning as experienced by the cells and tissues. Thus, we can build temporal profiles of deformation along stages of development, comprising both the instantaneous events and the cumulative deformation history. The application of this framework to 3D + time data of zebrafish embryogenesis allowed us to discover mechanical profiles that stabilized through time forming structures that organize in a scale comparable to the map of cell differentiation (fate map), and also suggesting correlation with genetic patterns. The framework was also applied to the analysis of the amnioserosa tissue in the drosophila’s dorsal closure, revealing that the oscillatory contraction triggered by the acto-myosin network organized complexly coupling different scales: local force generation foci, cellular morphology control mechanisms and tissue geometrical constraints. In summary, this PhD Thesis proposes a theoretical framework for the analysis of multi-scale cell dynamics that enables to quantify automatically mechanical patterns and also offers a new representation of the embryo dynamics as experienced by cells instead of how the microscope captures instantaneously the processes. Therefore, this framework enables for new strategies of quantitative analysis and comparison between embryos and tissues during embryogenesis from in-vivo images.