926 resultados para plant yield component
Resumo:
Proceedings of the 13th International UFZ-Deltares Conference on Sustainable Use and Management of Soil, Sediment and Water Resources - 9–12 June 2015 • Copenhagen, Denmark
Resumo:
This paper studies the effects of monetary policy on mutual fund risk taking using a sample of Portuguese fixed-income mutual funds in the 2000-2012 period. Firstly I estimate time-varying measures of risk exposure (betas) for the individual funds, for the benchmark portfolio, as well as for a representative equally-weighted portfolio, through 24-month rolling regressions of a two-factor model with two systematic risk factors: interest rate risk (TERM) and default risk (DEF). Next, in the second phase, using the estimated betas, I try to understand what portion of the risk exposure is in excess of the benchmark (active risk) and how it relates to monetary policy proxies (one-month rate, Taylor residual, real rate and first principal component of a cross-section of government yields and rates). Using this methodology, I provide empirical evidence that Portuguese fixed-income mutual funds respond to accommodative monetary policy by significantly increasing exposure, in excess of their benchmarks, to default risk rate and slightly to interest risk rate as well. I also find that the increase in funds’ risk exposure to gain a boost in return (search-for-yield) is more pronounced following the 2007-2009 global financial crisis, indicating that the current historic low interest rates may incentivize excessive risk taking. My results suggest that monetary policy affects the risk appetite of non-bank financial intermediaries.
Resumo:
COD discharges out of processes have increased in line with elevating brightness demands for mechanical pulp and papers. The share of lignin-like substances in COD discharges is on average 75%. In this thesis, a plant dynamic model was created and validated as a means to predict COD loading and discharges out of a mill. The assays were carried out in one paper mill integrate producing mechanical printing papers. The objective in the modeling of plant dynamics was to predict day averages of COD load and discharges out of mills. This means that online data, like 1) the level of large storage towers of pulp and white water 2) pulp dosages, 3) production rates and 4) internal white water flows and discharges were used to create transients into the balances of solids and white water, referred to as “plant dynamics”. A conversion coefficient was verified between TOC and COD. The conversion coefficient was used for predicting the flows from TOC to COD to the waste water treatment plant. The COD load was modeled with similar uncertainty as in reference TOC sampling. The water balance of waste water treatment was validated by the reference concentration of COD. The difference of COD predictions against references was within the same deviation of TOC-predictions. The modeled yield losses and retention values of TOC in pulping and bleaching processes and the modeled fixing of colloidal TOC to solids between the pulping plant and the aeration basin in the waste water treatment plant were similar to references presented in literature. The valid water balances of the waste water treatment plant and the reduction model of lignin-like substances produced a valid prediction of COD discharges out of the mill. A 30% increase in the release of lignin-like substances in the form of production problems was observed in pulping and bleaching processes. The same increase was observed in COD discharges out of waste water treatment. In the prediction of annual COD discharge, it was noticed that the reduction of lignin has a wide deviation from year to year and from one mill to another. This made it difficult to compare the parameters of COD discharges validated in plant dynamic simulation with another mill producing mechanical printing papers. However, a trend of moving from unbleached towards high-brightness TMP in COD discharges was valid.
Resumo:
The sugar beet cyst nematode, Heterodera schachtii, is a major agricultural pest. The disruption of the mating behaviour of this plant parasite in the field may provide a means of biological control, and a subsequent increase in crop yield. The H. schachtii female sex pheromone, which attracts homospecific males, was collected in an aqueous medium and isolated using high performance liquid chromatography. Characterization of the male-attractive material revealed that it was heat stable and water soluble. The aqueous medium conditioned by female H. schachtii was found to be biologically active and stimulated male behaviour in a concentration dependent manner. The activity of the crude pheromone was specific to males of H. schachtii and did not attract second stage juveniles. Results indicated that vanillic acid, a putative nematode pheromone, is not an active component of the H. schachtii sex pheromone. Male H. schachtii exhibited stylet thrusting, a poorly understood behaviour of the male, upon exposure to the female sex pheromone. This behaviour appeared to be associated with mate-finding and was used as a novel indicator of biological activity in bioassays. Serotonin, thought to be involved in the neural control of copulatory behaviour in nematodes, stimulated stylet thrusting. However, the relationship between stylet thrusting induced by the sex pheromone and stylet thrusting induced by serotonin is not clear. Extracellular electrical activity was recorded fi-om the anterior region of H. schachtii males during stylet thrusting, and appeared to be associated with this behaviour. The isolation of the female sex pheromone of H. schachtii may, ultimately, lead to the structural identification and synthesis of the active substance for use in a novel biological control strategy.
Resumo:
Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge.
Resumo:
Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by a myriad of factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by certain terroir factors , specifically that vines with low water status [more negative leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (more positive leaf ψ). Twelve different vineyard blocks (six each of Riesling and Cabernet franc) throughout the Niagara Region in Ontario, Canada were chosen. Data were collected during the growing season (soil moisture, leaf ψ), at harvest (yield components, berry composition), and during the winter (bud LT50, bud survival). Interpolation and mapping of the variables was completed using ArcGIS 10.1 (ESRI, Redlands, CA) and statistical analyses (Pearson’s correlation, principal component analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. Both leaf ψ and berry weight could predict the LT50 value, with strong positive correlations being observed between LT50 and leaf ψ values in eight of the 12 vineyard blocks. In addition, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir, in the Niagara region.
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
A real-time analysis of renewable energy sources, such as arable crops, is of great importance with regard to an optimised process management, since aspects of ecology and biodiversity are considered in crop production in order to provide a sustainable energy supply by biomass. This study was undertaken to explore the potential of spectroscopic measurement procedures for the prediction of potassium (K), chloride (Cl), and phosphate (P), of dry matter (DM) yield, metabolisable energy (ME), ash and crude fibre contents (ash, CF), crude lipid (EE), nitrate free extracts (NfE) as well as of crude protein (CP) and nitrogen (N), respectively in pretreated samples and undisturbed crops. Three experiments were conducted, one in a laboratory using near infrared reflectance spectroscopy (NIRS) and two field spectroscopic experiments. Laboratory NIRS measurements were conducted to evaluate to what extent a prediction of quality parameters is possible examining press cakes characterised by a wide heterogeneity of their parent material. 210 samples were analysed subsequent to a mechanical dehydration using a screw press. Press cakes serve as solid fuel for thermal conversion. Field spectroscopic measurements were carried out with regard to further technical development using different field grown crops. A one year lasting experiment over a binary mixture of grass and red clover examined the impact of different degrees of sky cover on prediction accuracies of distinct plant parameters. Furthermore, an artificial light source was used in order to evaluate to what extent such a light source is able to minimise cloud effects on prediction accuracies. A three years lasting experiment with maize was conducted in order to evaluate the potential of off-nadir measurements inside a canopy to predict different quality parameters in total biomass and DM yield using one sensor for a potential on-the-go application. This approach implements a measurement of the plants in 50 cm segments, since a sensor adjusted sideways is not able to record the entire plant height. Calibration results obtained by nadir top-of-canopy reflectance measurements were compared to calibration results obtained by off-nadir measurements. Results of all experiments approve the applicability of spectroscopic measurements for the prediction of distinct biophysical and biochemical parameters in the laboratory and under field conditions, respectively. The estimation of parameters could be conducted to a great extent with high accuracy. An enhanced basis of calibration for the laboratory study and the first field experiment (grass/clover-mixture) yields in improved robustness of calibration models and allows for an extended application of spectroscopic measurement techniques, even under varying conditions. Furthermore, off-nadir measurements inside a canopy yield in higher prediction accuracies, particularly for crops characterised by distinct height increment as observed for maize.
Resumo:
A field experiment was conducted under rainfed conditions in western Sudan at El-Obeid Research Farm and Eldemokeya Forest Reserve, North Kordofan State, during the growing seasons 2004/05 and 2005/06. The main objective was to investigate the soil physical and chemical properties and yield of groundnut (Arachis hypogea), sesame (Sesamum indicum) and roselle (Hibiscus sabdariffa) of an Acacia senegal agroforestry system in comparison with the sole cropping system. Data were recorded for soil physical and chemical properties, soil moisture content, number of pods per plant, fresh weight (kg ha^−1) and crop yield (kg ha^−1). The treatments were arranged in Randomized Complete Block Design (RCBD) and replicated four times. Significant differences (P < 0.05) were obtained for sand and silt content on both sites, while clay content was not significantly different on both sites. The nitrogen (N) and organic carbon were significantly (P < 0.05) higher in the intercropping system in Eldemokeya Forest Reserve compared with sole cropping. Soil organic carbon, N and pH were not significant on El-Obeid site. Yet the level of organic carbon, N, P and pH was higher in the intercropping system. Fresh weight was significantly different on both sites. The highest fresh weight was found in the intercropping system. Dry weights were significantly different for sesame and roselle on both sites, while groundnut was not significantly different. On both sites intercropping systems reduced groundnut, sesame and roselle yields by 26.3, 12 and 20.2%, respectively. The reduction in yield in intercropping plots could be attributed to high tree density, which resulted in water and light competition between trees and the associated crops.
Resumo:
The regional population growth in West Africa, and especially its urban centers, will bring about new and critical challenges for urban development policy, especially in terms of ensuring food security and providing employment for the growing population. (Peri-) urban livestock and vegetable production systems, which can contribute significantly to these endeavours, are limited by various constraints, amongst them limited access to expensive production factors and their (in)efficient use. To achieve sustainable production systems with low consumer health risks, that can meet the urban increased demand, this doctoral thesis determined nutrient use efficiencies in representative (peri-) urban livestock production systems in three West African cities, and investigated potential health risks for consumers ensuing from there. The field study, which was conducted during July 2007 to December 2009, undertook a comparative analysis of (peri-) urban livestock production strategies across 210 livestock keeping households (HH) in the three West African cities of Kano/Nigeria (84 HH), Bobo Dioulasso/Burkina Faso (63 HH) and Sikasso/Mali (63 HH). These livestock enterprises were belonging to the following three farm types: commercial gardening plus field crops and livestock (cGCL; 88 HH), commercial livestock plus subsistence field cropping (cLsC; 109 HH) and commercial gardening plus semi-commercial livestock (cGscL; 13 HH) which had been classified in a preceding study; they represented the diversity of (peri-) urban livestock production systems in West Africa. In the study on the efficiency of ruminant livestock production, lactating cowsand sheep herd units were differentiated based on whether feed supplements were offered to the animals at the homestead (Go: grazing only; Gsf: mainly grazing plus some supplement feeding). Inflows and outflows of nutrients were quantified in these herds during 18 months, and the effects of seasonal variations in nutrient availability on animals’ productivity and reproductive performance was determined in Sikasso. To assess the safety of animal products and vegetables, contamination sources of irrigated lettuce and milk with microbiological contaminants, and of tomato and cabbage with pesticide residues in (peri-) urban agriculture systems of Bobo Dioulasso and Sikasso were characterized at three occasions in 2009. Samples of irrigation water, organic fertilizer and ix lettuce were collected in 6 gardens, and samples of cabbage and tomato in 12 gardens; raw and curdled milk were sampled in 6 dairy herds. Information on health risks for consumers of such foodstuffs was obtained from 11 health centers in Sikasso. In (peri-) urban livestock production systems, sheep and goats dominated (P<0.001) in Kano compared to Bobo Dioulasso and Sikasso, while cattle and poultry were more frequent (P<0.001) in Bobo Dioulasso and Sikasso than in Kano. Across cities, ruminant feeding relied on grazing and homestead supplementation with fresh grasses, crop residues, cereal brans and cotton seed cake; cereal grains and brans were the major ingredients of poultry feeds. There was little association of gardens and livestock; likewise field cropping and livestock were rarely integrated. No relation existed between the education of the HH head and the adoption of improved management practices (P>0.05), but the proportion of HH heads with a long-term experience in (peri-) urban agriculture was higher in Kano and in Bobo Dioulasso than in Sikasso (P<0.001). Cattle and sheep fetched highest market prices in Kano; unit prices for goats and chicken were highest in Sikasso. Animal inflow, outflow and dairy herd growth rates were significantly higher (P<0.05) in the Gsf than in the Go cattle herds. Maize bran and cottonseed expeller were the main feeds offered to Gsf cows as dry-season supplement, while Gsf sheep received maize bran, fresh grasses and cowpea pods. The short periodic transhumance of Go dairy cows help them maintaining their live weight, whereas Gsf cows lost weight during the dry season despite supplement feeding at a rate of 1506 g dry matter per cow and day, resulting in low productivity and reproductive performance. The daily live weight gains of calves and lambs, respectively, were low and not significantly different between the Go and the Gsf system. However, the average live weight gains of lambs were significantly higher in the dry season (P<0.05) than in the rainy season because of the high pressure of gastrointestinal parasites and of Trypanosoma sp. In consequence, 47% of the sheep leaving the Go and Gsf herds died due to diseases during the study period. Thermo-tolerant coliforms and Escherichia coli contamination levels of irrigation water significantly exceeded WHO recommendations for the unrestricted irrigation of vegetables consumed raw. Microbial contamination levels of lettuce at the farm gate and the market place in Bobo Dioulasso and at the farm gate in Sikasso were higher than at the market place in Sikasso (P<0.05). Pesticide residues were detected in only one cabbage and one tomato sample and were below the maximum residue limit for consumption. Counts of thermo-tolerant coliforms and Escherichia coli were higher in curdled than in raw milk (P<0.05). From 2006 to x 2009, cases of diarrhea/vomiting and typhoid fever had increased by 11% and 48%, respectively, in Sikasso. For ensuring economically successful and ecologically viable (peri-) urban livestock husbandry and food safety of (peri-) urban foodstuffs of animal and plant origin, the dissemination and adoption of improved feeding practices, livestock healthcare and dung management are key. In addition, measures fostering the safety of animal products and vegetables including the appropriate use of wastewater in (peri-) urban agriculture, restriction to approve vegetable pesticides and the respect of their latency periods, and passing and enforcement of safety laws is required. Finally, the incorporation of environmentally sound (peri-) urban agriculture in urban planning by policy makers, public and private extension agencies and the urban farmers themselves is of utmost importance. To enable an efficient (peri-) urban livestock production in the future, research should concentrate on cost-effective feeding systems that allow meeting the animals’ requirement for production and reproduction. Thereby focus should be laid on the use of crop-residues and leguminous forages. The improvement of the milk production potential through crossbreeding of local cattle breeds with exotic breeds known for their high milk yield might be an accompanying option, but it needs careful supervision to prevent the loss of the local trypanotolerant purebreds.
Resumo:
Extensive grassland biomass for bioenergy production has long been subject of scientific research. The possibility of combining nature conservation goals with a profitable management while reducing competition with food production has created a strong interest in this topic. However, the botanical composition will play a key role for solid fuel quality of grassland biomass and will have effects on the combustion process by potentially causing corrosion, emission and slagging. On the other hand, botanical composition will affect anaerobic digestibility and thereby the biogas potential. In this thesis aboveground biomass from the Jena-Experiment plots was harvested in 2008 and 2009 and analysed for the most relevant chemical constituents effecting fuel quality and anaerobic digestibility. Regarding combustion, the following parameters were of main focus: higher heating value (HHV), gross energy yield (GE), ash content, ash softening temperature (AST), K, Ca, Mg, N, Cl and S content. For biogas production the following parameters were investigated: substrate specific methane yield (CH4 sub), area specific methane yield (CH4 area), crude fibre (CF), crude protein (CP), crude lipid (CL) and nitrogen-free extract (NfE). Furthermore, an improvement of the fuel quality was investigated through applying the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Through the specific setup of the Jena-Experiment it was possible to outline the changes of these parameters along two diversity gradients: (i) species richness (SR; 1 to 60 species) and (ii) functional group (grasses, legumes, small herbs and tall herbs) presence. This was a novel approach on investigating the bioenergy characteristic of extensive grassland biomass and gave detailed insight in the sward-composition¬ - bioenergy relations such as: (i) the most relevant SR effect was the increase of energy yield for both combustion (annual GE increased by 26% from SR8→16 and by 65% from SR8→60) and anaerobic digestion (annual CH4 area increased by 22% from SR8→16 and by 49% from SR8→60) through a strong interaction of SR with biomass yield; (ii) legumes play a key role for the utilization of grassland biomass for energy production as they increase the energy content of the substrate (HHV and CH4 sub) and the energy yield (GE and CH4 area); (iii) combustion is the conversion technique that will yield the highest energy output but requires an improvement of the solid fuel quality in order to reduce the risk of corrosion, emission and slagging related problems. This was achieved through applying the IFBB-procedure, with reductions in ash (by 23%), N (28%), K (85%), Cl (56%) and S (59%) and equal levels of concentrations along the SR gradient.
Resumo:
This study was conducted to investigate soil biological and chemical factors that give rise to cereal yield enhancing effects of legume rotations on sandy, nutrient poor West African soils. The aim was not only to gain more information on the role of legume residues and microorganisms in the soil nutrient cycle. But the study aimed at evaluating if differences in substrate qualities (e.g. root residues) cause changes in the microbial community structure due to specific and highly complex microbe-root-soil interactions. Site and system specific reactions of microorganisms towards rewetting, simulating the onset of rainy season, were observed. Higher respiration rates, higher amounts of microbial biomass carbon (Cmic) and nitrogen (Nmic) as well as higher ergosterol, muramic acid, glucosamine and adenylate concentrations were measured in CL soils of Koukombo and in both soils from Fada. The immediate increase in ATP concentrations after rewetting was likely caused by rehydration of microbial cells where N was not immobilized and, thus, available for plants facilitating their rapid development. Legume root residues led only to slightly better plant performances compared to the control, while the application of cereal roots reduced seedling growth. In contrast to sorghum seedlings, the microbial community did not react to the mineral treatment. Thus the energy supply in form of organic amendments increased microbial indices compared to mineral P application and the control. The results of basal respiration rates, Cmic and Corg levels indicate that the microbial community in the soil from Koukombo is less efficient in substrate use compared to microorganisms in the soil from Fada. However, the continuous carbon input by legume root residues might have contributed to these differences in soil fertility. With the 33P isotopic exchange method a low buffering capacity was detected in both soils irrespective of treatments. Calculated E values (E1min to E1min-1d and E1d-3m) indicated a slowly release of P due to root turnover while applied mineral P is taken up by plants or fixed to the soil. Due to the fact that sorghum growth reacted mainly to the application of mineral P and the microorganisms solely to the organic inputs, the combination of both amendments seems to be the best approach to a sustainable increase of crop production on many nutrient-poor, sandy West African soils. In a pot experiment, were CC and CL soils from Fada and Koukombo were adjusted to the same level of P and N concentrations, crop growth was significantly higher on CL soils, compared to the respective treatments on CC soils. Mycorrhizal infection of roots was increased and the number of nematodes, predominantly free living nematodes, was almost halfed on rotation soils. In conclusion, increased nutrient availability (especially P and N) through the introduction of legumes is not the only reason for the observed yield increasing effects. Soil biological factors seem to also play an important role. In a root chamber experiment the pH gradient along the root-soil-interface was measured at three times using an antimony microelectrode. For Fada soils, pH values were higher on CL than CC soils while the opposite was true for the Koukombo soils. Site-specific differences between Fada and Koukombo soils in N content and microbial community structures might have created varying crop performances leading to the contrasting pH findings. However, the mechanisms involved in this highly complex microbe-root-soil interaction remain unclear.
Resumo:
The impact of two crop planting methods and of the application of cyanobacterial inoculants on plant growth, yield, water productivity and economics of rice cultivation was evaluated with the help of a split plot designed experiment during the rainy season of 2011 in New Delhi, India. Conventional transplanting and system of rice intensification (SRI) were tested as two different planting methods and seven treatments that considered cyanobacterial inoculants and compost were applied with three repetitions each. Results revealed no significant differences in plant performance and crop yield between both planting methods. However, the application of biofilm based BGA bio-fertiliser + 2/3 N had an overall positive impact on both, plant performance (plant height, number of tillers) and crop yield (number and weight of panicles) as well as on grain and straw yield. Higher net return and a higher benefit-cost ratio were observed in rice fields under SRI planting method, whereas the application of BGA + PGPR + 2/3 N resulted in highest values. Total water productivity and irrigation water productivity was significantly higher under SRI practices (5.95 and 3.67 kg ha^(-1) mm^(-1)) compared to practices of conventional transplanting (3.36 and 2.44), meaning that using SRI method, water saving of about 34 % could be achieved and significantly less water was required to produce one kg of rice. This study could show that a combination of plant growth promoting rhizobacteria (PGPR) in conjunction with BGA and 2/3 dose of mineral N fertiliser can support crop growth performance, crop yields and reduces overall production cost, wherefore this practices should be used in the integrated nutrient management of rice fields in India.
Resumo:
Vegetables represent a main source of micro-nutrients which can improve the health status of malnourished poor in the world. Spinach (Spinacia oleracea L.) is a popular leafy vegetable in many countries which is rich with several important micro-nutrients. Thus, consuming Spinach helps to overcome micro-nutrient deficiencies. Pests and pathogens act as major yield constraints in food production. Root-knot nematodes, Meloidogyne species, constitute a large group of highly destructive plant pests. Spinach is found to be highly susceptible for these nematode attacks. Though agricultural production has largely benefited from modern technologies and innovations, some important dimensions which can minimize the yield losses have been neglected by most of the growers. Pre-plant or initial nematode density in soil is a crucial biotic factor which is directly responsible for crop losses. Hence, information on preplant nematode densities and the corresponding damage is of vital importance to develop successful control procedures to enhance crop production. In the present study, effect of seven initial densities of M. incognita, i.e., 156, 312, 625, 1250, 2,500, 5,000 and 10,000 infective juveniles (IJs)/plant (equivalent to 1000cm3 soil) on the growth and root infestation on potted spinach plants was determined in a screen house. In order to ensure a high accuracy, root infestation was ascertained by the number of galls formed, the percentage galled-length of feeder roots and galled-feeder roots, and egg production, per plant. Fifty days post-inoculation, shoot length and weight, and root length were suppressed at the lowest IJs density. However, the pathogenic effect was pronounced at the highest density at which 43%, 46% and 45% reduction in shoot length and weight, and root length, respectively, was recorded. The highest reduction in root weight (26%) was detected at the second highest density. The Number of galls and percentage galled-length of feeder roots/per plant showed significant progressive increase across the increasing IJs density with the highest mean value of 432.3 and 54%, respectively. The two shoot growth parameters and root length showed significant inverse relationship with the increasing gall formation. Moreover, the shoot and root length were shown to be mutually dependent on each other. Suppression of shoot growth of spinach greatly affects the grower’s economy. Hence, control measures are essentially needed to ensure a better production of spinach via reducing the pre-plant density below the level of 0.156 IJs/cm3.
Resumo:
A dual isotopic technique was used to assess the effects of soil type, and residues of Gliricidia sepium, without and with added fertiliser-P on the utilisation of P. Upland rice (Oryza sativa) was grown for 70 days in two tropical acid soils of different P sorbing capacity and P status. Uniformly P-32-labelled soils were treated with inorganic fertiliser-P tagged with P-33, Gliricidia sepium residue applied at planting and 3 weeks earlier, and in a combination of fertiliser-P and Gliricidia applied at and 3 weeks before planting. There were significant responses of shoot and root weights, and total P uptake to Gliricidia- and/or fertiliser-P addition in the Ultisol (low P status) but not the Oxisol (high P status), suggesting that P in the latter soil was not yield limiting, despite the high standard P requirement. Similarly, incorporation of Gliricidia three weeks before planting further increased shoot weight only in the Ultisol. There were generally higher proportions, quantities and percent utilisations of the Gliricidia- P and fertiliser-P in the Ultisol than in the Oxisol. Gliricidia significantly increased the utilisation of fertiliser-P only in the Ultisol. However, early application of Gliricidia increased Gliricidia- P but not fertiliser-P utilisation in the Ultisol. Added fertiliser-P did not influence Gliricidia- P utilisation.