934 resultados para plant functional type


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NACTF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor-and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Functional-structural plant models that include detailed mechanistic representation of underlying physiological processes can be expensive to construct and the resulting models can also be extremely complicated. On the other hand, purely empirical models are not able to simulate plant adaptability and response to different conditions. In this paper, we present an intermediate approach to modelling plant function that can simulate plant response without requiring detailed knowledge of underlying physiology. Plant function is modelled using a 'canonical' modelling approach, which uses compartment models with flux functions of a standard mathematical form, while plant structure is modelled using L-systems. Two modelling examples are used to demonstrate that canonical modelling can be used in conjunction with L-systems to create functional-structural plant models where function is represented either in an accurate and descriptive way, or in a more mechanistic and explanatory way. We conclude that canonical modelling provides a useful, flexible and relatively simple approach to modelling plant function at an intermediate level of abstraction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new method for producing a functional-structural plant model that simulates response to different growth conditions, yet does not require detailed knowledge of underlying physiology. The example used to present this method is the modelling of the mountain birch tree. This new functional-structural modelling approach is based on linking an L-system representation of the dynamic structure of the plant with a canonical mathematical model of plant function. Growth indicated by the canonical model is allocated to the structural model according to probabilistic growth rules, such as rules for the placement and length of new shoots, which were derived from an analysis of architectural data. The main advantage of the approach is that it is relatively simple compared to the prevalent process-based functional-structural plant models and does not require a detailed understanding of underlying physiological processes, yet it is able to capture important aspects of plant function and adaptability, unlike simple empirical models. This approach, combining canonical modelling, architectural analysis and L-systems, thus fills the important role of providing an intermediate level of abstraction between the two extremes of deeply mechanistic process-based modelling and purely empirical modelling. We also investigated the relative importance of various aspects of this integrated modelling approach by analysing the sensitivity of the standard birch model to a number of variations in its parameters, functions and algorithms. The results show that using light as the sole factor determining the structural location of new growth gives satisfactory results. Including the influence of additional regulating factors made little difference to global characteristics of the emergent architecture. Changing the form of the probability functions and using alternative methods for choosing the sites of new growth also had little effect. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several pathogenic strains of Escherichia coli exploit type III secretion to inject effector proteins into human cells, which then subvert eukaryotic cell biology to the bacterium's advantage. We have exploited bioinformatics and experimental approaches to establish that the effector repertoire in the Sakai strain of enterohemorrhagic E. coli (EHEC) O157:H7 is much larger than previously thought. Homology searches led to the identification of > 60 putative effector genes. Thirteen of these were judged to be likely pseudogenes, whereas 49 were judged to be potentially functional. In total, 39 proteins were confirmed experimentally as effectors: 31 through proteomics and 28 through translocation assays. At the protein level, the EHEC effector sequences fall into > 20 families. The largest family, the NleG family, contains 14 members in the Sakai strain alone. EHEC also harbors functional homologs of effectors from plant pathogens (HopPtoH, HopW, AvrA) and from Shigella (OspD, OspE, OspG), and two additional members of the Map/IpgB family. Genes encoding proven or predicted effectors occur in > 20 exchangeable effector loci scattered throughout the chromosome. Crucially, the majority of functional effector genes are encoded by nine exchangeable effector loci that lie within lambdoid prophages. Thus, type III secretion in E. coli is linked to a vast phage metagenome, acting as a crucible for the evolution of pathogenicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To date, it has been thought that cannabinoid receptors in CNS are primarily of the CB1R subtype, with CB2R expressed only in glia and peripheral tissues. However, evidence for the expression of CB2 type cannabinoid receptors at neuronal sites in the CNS is building through anatomical localization of receptors and mRNA in neurons and behavioural studies of central effects of CB2R agonists. In the medial entorhinal area of the rat, we found that blockade of CB1R did not occlude suppression of GABAergic inhibition by the non-specific endogenous cannabinoid 2-AG, suggesting that CB1R could not account fully for the effects of 2-AG. Suppression could be mimicked using the CB2R agonist JWH-133 and reversed by the CB2R inverse agonist AM-630, indicating the presence of functional CB2R. When we reversed the order of drug application AM-630 blocked the effects of the CB2R agonist JWH-133, but not the CB1R inverse agonist LY320135. JTE-907, a CB2R inverse agonist structurally unrelated to AM-630 elicited increased GABAergic neurotransmission at picomolar concentrations. Analysis of mIPSCs revealed that CB2R effects were restricted to action potential dependent, but not action potential independent GABA release. These data provide pharmacological evidence for functional CB2R at CNS synapses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We solve the functional equation f(x^m + y) = f(x)^m + f(y) in the realm of polynomials with integer coefficients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Special generalizing for the artificial neural nets: so called RFT – FN – is under discussion in the report. Such refinement touch upon the constituent elements for the conception of artificial neural network, namely, the choice of main primary functional elements in the net, the way to connect them(topology) and the structure of the net as a whole. As to the last, the structure of the functional net proposed is determined dynamically just in the constructing the net by itself by the special recurrent procedure. The number of newly joining primary functional elements, the topology of its connecting and tuning of the primary elements is the content of the each recurrent step. The procedure is terminated under fulfilling “natural” criteria relating residuals for example. The functional proposed can be used in solving the approximation problem for the functions, represented by its observations, for classifying and clustering, pattern recognition, etc. Recurrent procedure provide for the versatile optimizing possibilities: as on the each step of the procedure and wholly: by the choice of the newly joining elements, topology, by the affine transformations if input and intermediate coordinate as well as by its nonlinear coordinate wise transformations. All considerations are essentially based, constructively and evidently represented by the means of the Generalized Inverse.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The abuse of antibiotics and the emergence of multi-drug resistant bacterial strains have created the need to explore alternative methods of controlling microbial pathogens. The bacteriocin family of antimicrobial peptides has been proposed as one such alternative to classic antibiotics. Nisin A belongs to the subgroup of bacteriocins called the lantibiotics, which contain several unusual amino acids as a consequence of enzyme-mediated post-translational modifications. As nisin is produced by generally regarded as safe (GRAS) microorganisms, it could potentially be applied in a clinical setting. However, as lantibiotics are naturally produced in such small quantities, this can hinder their industrial potential. In order to overcome this, several approaches can be utilised. For example, given the gene encoded nature of lantibiotics, genetic engineering approaches can be implemented in order to yield variants with enhanced properties. Here, the use of mutagenesis-based strategies was employed to obtain a derivative of nisin with enhanced bioactivity in vitro. Investigations with purified peptide highlighted the enhanced specific activity of this variant, nisin M21V, against food-borne Listeria monocytogenes strains. Furthermore, this specific enhanced bioactivity was evident in a mouse model of listeriosis. Reductions in bioluminescence and microbial counts in organs from infected mice were observed following treatment with nisin M21V compared to that of wild-type nisin A. Peptide bioengineering approaches were also implemented to obtain additional novel derivatives of nisin. The generation of “S5X” and “S33X” banks (representing a change of natural serines at positions 5 and 33 to all possible alternative residues) by a combination of site-saturation and site-directed mutagenesis led to the identification of several derivatives exhibiting improved stability. This allowed the rational design of variants with enhanced stability compared to that of wild type nisin. Another means of tackling issues associated with lantibiotic yield is to combine lantibiotics with other antimicrobials. This could circumvent the need for enhanced production while also reducing concentrations of the peptide antimicrobials. We observed that combinations of nisin variants and low levels of plant essential oils (thymol, carvacrol, trans-cinnamaldehyde) significantly controlled Gram negative foodborne pathogens in in vitro assays compared to nisin A-essential oil combinations. This enhanced control was also evident in model food systems. Nisin variants used in conjunction with carvacrol significantly reduced numbers of E. coli O157:H7 in apple juice while a commercial nisin preparation used in combination with citric acid significantly controlled C. sakazakii in infant milk formula. It is noteworthy that while nisin is generally associated with Gram positive targets, upon combination with plant essential oils the spectrum of inhibition was broadened to Gram negative targets.