1000 resultados para plagioclase xenocryst


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Suíte Intrusiva Santa Clara está inserida na Província Estanífera de Rondônia, na porção SW do Cráton Amazônico. Essa suíte intrusiva é composta pelos maciços Santa Clara, Oriente Velho, Oriente Novo, Manteiga-Sul, Manteiga-Norte, Jararaca, Carmelo, Primavera e das Antas. Os litotipos que perfazem a Suíte Santa Clara ocorrem hospedados nas rochas do Complexo Jamari, uma associação polideformada composta por gnaisses ortoderivados e paraderivados. Características observadas em campo e em análises petrográficas permitiram subdividir o Maciço Santa Clara em cinco fácies distintas: fácies porfirítica, fácies isotrópica, fácies fina, fácies piterlítica e fácies viborgítica. Os litotipos observados correspondem a hornblenda-biotita granitos e biotita granitos intermediários a ácidos, com composições médias semelhantes àquelas verificadas para sienogranitos e monzogranitos. Geoquimicamente, três magmas podem ser identificados. O magma menos evoluído corresponde às rochas das fácies porfirítica e equigranular, e o mais evoluído compreende as fácies de granulometria fina e piterlítica. A fácies viborgítica representa o terceiro líquido magmático, e aparentemente é diferente de todas as outras fácies em termos de aspectos de campo e geoquímica. A análise litogeoquímica indica que estes granitoides são subalcalinos, bastante empobrecidos em MgO e exibem caráter metaluminoso a fracamente peraluminoso. Os padrões de elementos-traços evidenciam que tais granitóides possuem alto conteúdo em elementos incompatíveis (Rb, Zr, Y, Ta, Ce) e ETR, com exceção do Eu. Além disso, também exibem leve enriquecimento em LILE, forte depleção em elementos como Sr e Ti, e leve empobrecimento de Ba, indicando que o fracionamento de minerais como plagioclásio e titanita foi importante na evolução do líquido magmático analisado. A anomalia negativa de Nb indica envolvimento de material crustal nos processos magmáticos que geraram estes granitoides. Os litotipos analisados possuem características típicas de granitos tipo-A ferroan, e as razões FeOt/MgO entre 4,27 e 26,22 sugerem tratar-se de uma série de granitos félsicos fracionados. Os padrões de ETR observados para os litotipos analisados exibem um considerável enriquecimento em ETRL, e anomalia negativa de Eu, sugerindo fracionamento de feldspato durante o processo de diferenciação do líquido magmático. Diagramas discriminantes de ambientes tectônicos sugerem que os litotipos do Maciço Intrusivo Santa Clara são típicos de ambiente intraplaca, do tipo-A2, isto é, associados a ambientes pós-colisionais/pós-orogênicos. As características isotópicas observadas para os granitoides do Maciço Santa Clara sugerem que os mesmos foram gerados a partir da fusão parcial de uma crosta inferior pré-existente. As idades U-Pb entre 1,07 e 1,06 Ga são compatíveis com um magmatismo ocorrido nos estágios finais da colagem do supercontinente Rodínia (1,2-1,0 Ga) e estágios finais do Ciclo Orogênico Sunsás-Aguapeí (1320-1100 Ma). Sugere-se ainda que na verdade o Maciço Santa Clara seja formado por uma coalescência das três intrusões graníticas que são representadas pelos três magmas anteriormente descritos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lamprófiros e diabásios alcalinos afloram no litoral dos estados de São Paulo e Rio de Janeiro e integram o Enxame de Diques da Serra do Mar (EDSM). Essas rochas ocorrem sob a forma de diques e intrudem o Orógeno Ribeira, de idade Neoproterozóica/Cambro-Ordoviciana, inserindo-se no contexto geodinâmico de abertura do Oceano Atlântico Sul durante o Cretáceo Superior. Essas intrusões são subverticais e orientam-se preferencialmente a NE-SW, seguindo a estruturação das rochas encaixantes. Os lamprófiros são classificados como monchiquitos e camptonitos e exibem, respectivamente, textura hipocristalina e holocristalina. Apresentam também textura panidiomórfica, fenocristais de clinopiroxênio e olivina, imersos em matriz formada essencialmente por esses mesmos minerais, além de biotita, kaersutita e minerais opacos. O camptonito apresenta ainda plagioclásio na matriz. Os diabásios alcalinos são hipocristalinos a holocristalinos, equigranulares a inequigranulares, com fenocristais de olivina e/ou clinopiroxênio e/ou plagioclásio, em uma matriz composta essencialmente por esses minerais. As rochas estudadas caracterizam séries alcalinas miaskíticas, com os lamprófiros sendo tanto sódicos, potássicos e ultrapotássicos e os diabásios alcalinos como predominantemente sódicos. Modelagens petrogenéticas envolvendo possíveis processos evolutivos mostram que é improvável que os lamprófiros sejam cogenéticos por processos evolutivos envolvendo tanto cristalização fracionada, com ou sem assimilação concomitante, quanto hibridização. O mesmo ocorre para os diabásios alcalinos. A discriminação de fontes mantélicas foi feita com base nos teores de elementos traços de amostras representativas de líquidos parentais e indica que esse magmatismo alcalino está relacionado a fontes lherzolíticas com fusão parcial na zona de estabilidade do espinélio, isto é, a poucas profundidades. Os dados litogeoquímicos e isotópicos do sistema Sr-Nd das rochas estudadas sugerem tanto o envolvimento de fontes férteis, associadas ao manto sublitosférico, quanto de fontes enriquecidas, relacionadas ao manto litosférico subcontinental. Modelagens de mistura binária revelam que a petrogênese dos lamprófiros e diabásios alcalinos envolveu uma grande participação de um componente fértil misturado com contribuições menores de um componente enriquecido. Idades TDM (760-557 Ma) obtidas sugerem remobilização do manto litosférico no Neoproterozóico, talvez relacionadas à subducção da Placa São Francisco preteritamente à colisão do Orógeno Ribeira. Altas razões CaO/Al2O3 para os líquidos lamprofíricos menos evoluídos, altos teores de Zr, correlações negativas Zr/Hf e Ti/Eu e associação com carbonatitos indicam condições metassomáticas de alto CO2/H2O. Em escala local, modelos geodinâmicos baseados na astenosfera não isotérmica parecem mais aplicáveis. No entanto, modelos geodinâmicos baseados na astenosfera isotérmica (com o envolvimento de plumas) parecem mais indicados num contexto regional, considerando-se outras províncias alcalinas contemporâneas e correlatas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray diffraction (XRD) mineralogical and grain-size analyses indicate that inner continental shelf sediments in the East China Sea (ECS) represent a unique mixing of clays derived from the Yangtze River and silts/sands from small western Taiwanese rivers. Taiwanese (e g., Choshui) clays (< 2 mu m) display no smectite but the best illite crystallinity and are only distributed along southeastern Taiwan Strait. Both Yangtze and Taiwanese river clays are illite-dominated, but the poor illite crystallinity and the presence of smectite and kaolinite indicate that Taiwan Strait clays are mainly Yangtze-dominated. In contrast, medium silts (20-35 mu m) and very fine sands (63-90 mu m) in the Taiwan Strait are characterized by low feldspar/quartz, low K-feldspar/plagioclase and high kaolinite/quartz, indicating their provenance from Taiwanese rivers. Taiwanese silts and sands are introduced primarily by the way of typhoon-derived floods and transported northward by the Taiwan Warm Current during summer-fall months. Yangtze clays, in contrast, are widely dispersed southward about 1000 km to the western Taiwan Strait, transported by the China Coastal Current during winter-spring months Since most Taiwan Strait samples were collected in May 2006, clay results in this paper might only represent the winter-spring pattern of the dispersal of Yangtze sediments. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13 degrees N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a "clinopyroxene paradox". The highest magnesium-bearing MORB sample E13-3B (MgO = 9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure > 4 +/- 1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure similar to 1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at > 4 +/- 1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at > 4 +/- 1 kbar to mainly olivine+plagioclase crystallization at < 1 kbar, which contributes to the explanation of the "clinopyroxene paradox".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variolitic andesite from the Susong County in the Dabie Mountains implies that it was erupted in water. The mineralogy of the varioles is primarily radiate plagioclase (albite sind oligoclase), with little pyroxene, hornblende and quartz (derived from alteration). The pyroxene, hornblende and quartz are in the interstices between plagiocalse. The matrix consists of glass, hornblende, chlorite, epidote and zoisite. It is clearly subjected an extensive alteration. The andesite has an uncommon chemical composition. The SiO2 content is about 56.8%, TiO2 = 0.9%, MgO = 6.4%, Fe2O3 (tot) = 6.7%similar to 7.6%, 100Mg/(Mg + Fe) = 64.1 similar to 66.2. Mg-# is significantly high. The andesite has high abundances of large-lithophile trace elements (e.g. K, Ba. Sr, LREE), e.g. La/Nb = 5.56 similar to 6.07, low abundances of high-strength-field elements (HFSE e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subduction-related magmas. In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a character of the continental margins. There has a strong punishment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)(N) is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)(N) = 28.63 similar to 36.74, (La/Y)(N) = 70.33 similar to 82.4. The elements Y and Yb are depleted greatly, Y<20 g/g, Y-N = 2.74 similar to 2.84, Yb-N = 2.18 similar to 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is - 18.7 similar to -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the variolitic basaltic andesite was resulted from the mantle wedge of North China block, which had the Nd model age of 2.5Ga, when the Yangze block which had the Nd model age of 1.7Ga subducted beneath it. So the variolitic andesite has characteristics of the island-are volconic rocks oil a continental basement in the vicinity of the destructive continental margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of Late Cretaceous mafic dykes and their entrained peridotite and granulite xenoliths as well as clinopyroxene xenocrysts in the Qingdao region provide us a precious opportunity to unveil the nature and characteristics of the Late Mesozoic lithospheric mantle and lower crust beneath the Jiaodong region, and the change of the magma sources. These studies are of important and significant for understanding the lithospheric evolution in the eastern North China Craton. There were two periods of magma activities in Late Mesozoic in Qingdao Laoshan region, one was around 107Ma in the Early Cretaceous and the other around 86Ma in the Late Cretaceous according to the whole rock K-Ar age determination. The Early Cretaceous mafic dykes and the Late Cretaceous mafic dyke (i.e. Pishikou mafic dike) have completely different geochemical characteristics. The Early Cretaceous mafic dykes are enriched in LILE, strongly depleted in HFSE (Nb, Ta, Zr, Hf) and characterized by the highly radiogenic Sr and Nd isotopic compositions. These geochemical features indicate that the Early Cretaceous mafic dykes were derived from an enriched lithospheric mantle. In contrast, the Late Cretaceous mafic dyke is enriched in LILE, without HFSE depletion (Nb, Ta, Zr, Hf) and has less radiogenic Nd and Sr isotopic compositions. These geochemical features indicate that the Late Cretaceous mafic dyke was derived from the asthenosphere modified by subducted pelagic sediment contamination. The intrusive age of the Late Cretaceous mafic dyke provides further information for the termination of the lithosphere thinning for the eastern North China Crtaon. Pishikou Late Cretaceous mafic dyke contains abundant peridotitic xenoliths, granulite xenoliths and clinopyroxene xenocrysts. The peridotitic xenoliths can be divided into two types: high Mg# peridotites and low Mg# peridotites, according to their textural and mineral features. The high-Mg# peridotites have high Fo (up to 92.2) olivines and high Cr# (up to 55) spinels. The clinopyroxenes in the high# peridotites are rich in Cr2O3 and poor in Al2O3. The low-Mg# peridotites are typified by low Mg# (Fo <90) in olivines and low Cr# (Cr# <0.14) in spinels. The clinopyroxenes in the low-Mg# peridotites are rich in Al2O3 and Na2O and poor in Cr2O3. These two type peridotites have similar equilibrated temperatures of 950C-1100C. The Clinopyroxenes in the high-Mg# peridotites generally have high and variable REE contents (REE = 5.6-84 ppm) and LREE-enriched chondrite-normalized patterns ((La/Yb)N>1). In contrast, the clinopyroxenes in the low-Mg# peridotites have low REE contents (REE = 12 ppm) and LREE-depleted patterns ((La/Yb)N<1). The textural, mineral and elemental features of the low-Mg# peridotites are similar to those of the low-Mg peridotites from the Junan, representing the newly-accreted lithospheric mantle. However, the mineralogical and petrological features of the high-Mg# peridotites are similar to those of the high-Mg# peridotites from the Junan region, representing samples from the old refractory lithospheric mantle that was strongly and multiply affected by melts of different origins Late Cretaceous mafic dike in the Qingdao region also contains two types of granulite xenoliths according to the mineral constituents: the pyroxene-rich granulites and the plagioclase-rich granulites. Equilibrated temperatures calculated from the cpx-opx geothermometers are in a range of 861C - 910C for the pyroxene-rich granulites and of 847C - 890C for the plagioclase-rich granulites. The equilibrated pressure for the plagioclase-rich granulites is in a range of 9.9-11.7 kbar. Combined with the results of the peridotitic xenoliths, a 40C temperature gap exists between the peridotite and the granulite. The petrological Moho was 33~36 km at depths, broadly consistent with the seismic Moho estimated from the geophysical data. This indicates that there was no obvious crust-mantle transition zone in the Qingdao region in the Late Mesozoic. Pishikou Late Cretaceous mafic dyke entrained lots of clinopyroxene xenocrysts which are characterized by the chemical zoning. According to the zoning features, two types of clinopyroxene xenoliths can be classified, the normal zoning and the revise zoning. The normally-zoned clinopyroxene xenocrysts have LREE-depleted REE patterns in the cores. In contrast, the revisely-zoned clinopyroxenes have LREE-enriched REE patterns in the cores. According to the rim and core compositions of xenocrysts, all the rims are balanced with the host magma. Meanwhile, the origins of the cores were complicated, in which the normally-zoned clinopyroxenes were derived form the lithospheric mantle and some of the reversely-zoned clinopyroxnes were originated from the lower crust. Other revisely-zoned clinopyroxenes had experienced complex geological evolution and need to be further investigated. According to the above results, a simplified lithospheric profile has been established beneath the Qingdao region and a constraint on the nature and characteristics of the lithospheric mantle and lower crust has been made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Granulites from Huangtuling in the North Dabie metamorphic core complex in eastern China preserve rare mineralogical and mineral chemical evidence for multistage metamorphism related to Paleoproterozoic metamorphic processes, Triassic continental subduction-collision and Cretaceous collapse of the Dabieshan Orogen. Six stages of metamorphism are established, based on detailed mineralogical and petrological studies: (I) amphibolite facies (6.3–7.0 kbar, 520–550 °C); (II) high-pressure/high-temperature granulite facies (12–15.5 kbar, 920–980 °C); (III) cooling and decompression (4.8–6.0 kbar, 630-700 °C); (IV) medium-pressure granulite facies (7.7–9.0 kbar, 690–790 °C); (V) low-pressure/high-temperature granulite facies (4.0–4.7 kbar, 860–920 °C); (VI) retrograde greenschist facies overprint (1–2 kbar, 340–370 °C). The P–T history derived in this study and existing geochronological data indicate that the Huangtuling granulite records two cycles of orogenic crustal thickening events. The earlier three stages of metamorphism define a clockwise P–T path, implying crustal thickening and thinning events, possibly related to the assembly and breakup of the Columbia Supercontinent ca. 2000 Ma. Stage IV metamorphism indicates another crustal thickening event, which is attributed to the Triassic subduction/collision between the Yangtze and Sino–Korean Cratons. The dry lower crustal granulite persisted metastable during the Triassic subduction/collision due to lack of hydrous fluid and deformation. Stage V metamorphism records the Cretaceous collapse of the Dabieshan Orogen,possibly due to asthenosphere upwelling or removal of the lithospheric mantle resulting in heating of the granulite and partial melting of the North Dabie metamorphic core complex. Comparison of the Huangtuling granulite in North Dabie and the high-pressure (HP)–ultrahigh-pressure (UHP) metamorphic rocks in South Dabie indicates that the subducted upper (South Dabie) and lower (North Dabie) continental crusts underwent contrasting tectonometamorphic evolution during continental subduction–collision and orogenic collapse. High-pressure granulites are generally characterized by the absence of orthopyroxene. However, the Huangtuling felsic granulite rarely preserves the high-pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K-feldspar + quartz. To investigate the effects of bulk rock composition on the stability of orthopyroxene-bearing, high-pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, we constructed a series of P–T–X pseudosections based on the melt-reintegrated composition of the Huangtuling felsic high-pressure granulite. Our calculations demonstrate that the orthopyroxene-bearing, high-pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. Our study also reveals that the XAl values in the residual felsic–metapelitic, high-pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene-bearing high-pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many Archean TTG grey suites in the Wutaishan area, northern Shanxi Province, China. In the past one hundred years, many geologists have done excellent research work in the Wutaishan and its adjacent regions. However, the TTG suites were almost neglected. Located in the northern slope of Mt. Hengshan-namely the Archean Hengshan Island Arc, intruded the Zhujiafang supercrustal rocks at almost 2.5Ga, the Yixingzhai TTG Suite is originated from partial melting of the ancient lower crust upper mantle by REE and trace elements, and the emplacement occurred in an Archean island arc. The rocks are mainly of tonalitic, I type, and calc-alkaline trends are found in the magmatic evolution. At almost 1.8 Ga, the suite was transformed to be dome-like schists in an arc-arc collision event, and the rocks were metamorphosed to an extent of amphibolitic to granulitic facies. The peak metamorphic condition is of 710-760 ℃/0.68-0.72GPa, and the subsequent cooling history is recorded as 560-620 ℃/0.46-0.60GPa. In the center of the Mt. Wutaishan-known as the Archean Wutaishan Island Arc, intruded the Archean Chechang-Beitai TTG Suite, which is of 2.5Ga old and of trondhjemitic and tonalitic, with coexisting I- and S-types and a trondhjemitic magmatic evolution trend. Through REE and trace elements, the suite is believed to be from the partial melting of the ancient lower crust or upper mantle. The 1.8 Ga collision event also made the suite gneissic and the it was metamorphosed to be amphibolitic facies, whose peak condition is approximately of 680 (±50) ℃/0.7Gpa, and the subsequent cooling process is recorded as 680 (±50) ℃、550(±50) ℃、420(±10) ℃. Crustal growth is fulfilled through magmatic intrusion as well as eruption at about 2.5Ga, arc-arc collision at about 1.8 Ga in the Wutaishan area and its environs. Additionally, the biotite-muscovite and muscovite-plagioclase geothermometers are refined, and the biotite-hornblende geothermometer is developed in this dissertation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As powerful tools to study the lithosphere dynamics, the effective elastic thickness (Te) as well as the envelope of yielding stress of lithosphere have been attracted great attention of geoscientists in the past thirty years. The oceanic lithosphere, contrary to the continental lithosphere, has more fruits for its simple structures and evolution process. In continent, the lithosphere commonly is complex and variable in the rheological, thermal structures, and has a complicated history. Therefore, the application of the effective elastic thickness in continent is still a subject to learn in a long time. Te, with the definition of the thickness of an elastic plate in theory flexured by the equal benging of the real stress in the lithosphere plate (Turcotte, 1982), marks the depth of transition between elastic and fluid behaviors of rocks subjected to stress exceeding 100 MPa over the geological timescales (McNutt, 1990). There are three methods often adapted: admittance or isostatic response function, coherence and forwarding. In principle, the models of Te consist of thermal-rheological, non-linear Maxwell, non-linear work hardening and rheological layered models. There is a tentative knowledge of Te that it is affected by the following factors: crustal thickness, crust-mantle decoupling, plate bending, boundary conditions of plate (end forces and bending moments), stress state, sedimentary layer, faulting effect, variation in the mountain belts' strike, foreland basin, inheritance of tectonic evolution, convection of mantle, seismic depth and lithosphere strength. In this thesis, the author introduces the geological sketch of the Dabie collisional orogenic belt and the Hefei Basin. The Dabie Mts. is famous for the ultra-high pressure metamorphism. The crustal materials subducted down to the depth of at least 100 km and exhumed. So that the front subjects arise such as the deeply subduction of continent, and the post-collisional crust-mantle interaction. In a geological journey at June of 1999, the author found the rarely variolitic basaltic andesite in the Dabie Mts. It occurs in Susong Group, near Zhifenghe Countryside, Susong County, Anhui Province. It is just to the south of the boundary between the high-grade Susong melange and the ultra-high grade South Dabie melange. It has a noticeable knobby or pitted appearance in the surface. The size of the varioles is about 1-4 mm. In hand-specimen and under microscope, there are distinct contacts between the varioles and the matrice. The mineralogy of the varioles is primarily radiate plagioclase, with little pyroxene, hornblende and quartz. The pyroxene, hornblende and quartz are in the interstices between plagioclase. The matrix is consisted of glass, and micro-crystals of chlorite, epidote and zoisite. It is clearly subjected and extensive alteration. The andesite has an uncommon chemical composition. The SiO_2 content is about 56.8%, TiO_2 = 0.9%, MgO = 6.4%, (Fe_2O_3)_(Total) = 6.7% ~ 7.6%, 100 Mg/(Mg+Fe) = 64.1 ~ 66.2. Mg# is significantly high. The andesite has higher abundances of large-lithophile trace elements (e.g. K, Ba, Sr, LREE), e.g. La/Nd = 5.56-6.07, low abundances of high-strength-field elements (HFSE, e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subducted-related magmas (Pearcce, 1982; Sun and McDonaugh, 1989). In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a characteristic of the continental margins (Pearce, 1982). There has a strongly enrichment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)_N is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)_N = 28.63-36.74, (La/Y)_N = 70.33 - 82.84. The elements Y and Yb depleted greatly, Y < 20 ppm, Y_N = 2.74-2.84, Yb_N = 2.18 - 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is -18.7 ~ -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the basaltic andesite was resulted from the post-collisional crust-mantle interaction between the subducted Yangze carton and the mantle of Sino-Korea carton. To obtain the Te of the lithosphere beneath the Dabie Mts. and the Hefei Basin, the author applies the coherence method in this thesis. The author makes two topography-gravity profiles (profiles 7~(th) and 9~(th)) across the Dabie Mts. and the Hefei Basin, and calculates the auto-coherence, across coherence, power spectrum, across power spectrum of the topography and gravity of the two profiles. From the relationships between the coherence and the wave-number of profiles. From the relationships between the coherence and the wave-number of profiles 7~(th) and 9~(th), it is obtained that the characteristic wavelengths respectively are 157 km and 126 km. Consequently the values of effective elastic thickness are 6.5 km and 4.8 km, respectively. However, the Te values merely are the minimum value of the lithosphere because the coherencemethod in a relative small region will generate a systemic underestimation. Why there is a so low Te value? In order to check the strength of the lithosphere beneath the Dabie Mts., the authore tries to outline the yielding-stress envelope of the lithosphere. It is suggested that the elastic layers in the crust and upper mantle are 18 km and 35 km, respectively. Since there exist a low viscosity layer about 3-5 km thickness, so it is reasonable that the decoupling between the crust and mantle occurred. So the effective thickness of the lithosphere can be estimated from the two elastic layers. Te is about 34 km. This is the maximum strength of the lithosphere. We can make an approximately estimation about the strength of the lithosphere beneath the Dabie Mts.: Te is about 20-30 km. The author believes that the following factors should be responsible for the low Te value: (1) the Dabie Mts. has elevated strongly since K_3-J_1. The north part of the Dabie Mts. elevates faster than the south part today; (2) there occur large active striking faults in this area. And in the east, the huge Tan-Lu striking fault anyway tends to decrease the lithosphere strength; (3) the lithosphere beneath the Dabie Mts. is heter-homogeneous in spatio-temporal; (4) the study area just locates in the adjacent region between the eastern China where the lithosphere thickness is significantly reduced and the normal western China. These factors will decrease the lithosphere strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Baoyintu Group, lies in Wulate-zhongqi, Inner Mongolia, is a set of medium-grade metamorphic rock series which undergoes complex deformations. It consists of pelite schist, greenschist, plagioclase amphibolite quartzite and marble. The pelite schist is the main rock type and contains the classic medium pressure metamorphic minerals. The author divided Baoyintu group into five assemblages, investigated the rock association and plotted geological section of each assemblage in this area. Based on the systemically study of structural geology, petrology, geochemistry and mineralogy, the author reconstructs the protolith, sedimentary environment and tectonic evolution, discusses the mesoscopic and microscopic structure, metamorphism, geochemistry characters and the correlation between porphyroblast growth and deformation-metamorphism. There are three phase deformations in the research area: the earliest one occurred as the Baoyintu group deformed and metamorphosed and the main structure pattern is tight fold within layers during the Dl, large scale reversed fold and two phase faults (Fl fault and F2 fault) during the D2, and superimposed fold and F3 fault during D3. The F3 trancate the Wenduermian group of Silurian. The second and third phase deformation are relate to the orogenic event of late period of early Paleozoic. According to the rock association ,characteristics of the rocks and research of geochemistry, we get some information of the sedimentary environment and tectonic evolution of Baoyintu group. The source rocks are a set of terrigenous deposits-volcanic formation which reflect the history of the tectonic setting: stable- active-restable. And there are two sedimentary cycle from first assemblage to fifth assemblage: from first assemblage to fourth assemblage is a course of progression and the fifth assemblage is a start of regression. We also get the information of the P-T-t path by studying petrographies and calculating temperature and pressure. The path is not similiat to any classic type. And the interpretation is different from the traditional opinion. The P-T-t path reflects the dynamic course of convergence and uplift, magma underplating, back-arc extension and convergence of continental margin. Applying the theory of deformation partitioning to this area, the author discuss the relationship between deformation and porphyroblast growth, and get the conclusion of the sequence of deformation and metamorphism. At the first time we measure the distribution of chemical composition within the porphyroblast by XRF, confirm the theory of deformation partitioning quantitative and get new understanding about growth phase of porphyroblast and growth mode of porphyroblast: porphyroblast grow in the manner as "rose flower", the growth is controlled by the deformation. The elements distribution in porphyroblast reflects the growth manner and indicate history of metamorphism and deformation. So, we can deduce the metmorphism and deformation from the elements distribution in porphyroblast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we examined the surface features of quartz grains, the quartz oxygen isotopic ratios and the mineralogical compositions of the loess - paleosol - red clay sediments systematically. The surface features of quartz grains do not show significant changes of the dust deposits through the past seven million years. The particles were mainly created in the process of glacial and frost weathering of high mountains. Then the surfaces were altered in some degree by the flood and wind abrasion. The surface features registered all these processes. The assemblages of surface features changed for four times in the past seven million years, the occurrence ages are: 5.0~4.2MaBP, about 3.6MaBP, about 2.6MaBP and about 0.9MaBP, respectively. This may indicate that there were uplift events of the Tibetan Plateau during those times. The oxygen isotopic compositions of quartz in the sediments represent the oxygen isotopic compositions of the initial dusts because of the stable properties of quartz both physically and chemically. The oxygen isotopic compositions of 4~16um quartz changed significantly at about 2.6MaBP, decreasing from about 19.5%o to about 18.5%o. This decrease of quartz oxygen isotopic ratio suggests that the environments of the dust source areas changed at that time, or the range of dust source area changed at that time. The environmental change may result from the structural evolution of the Tibetan Plateau and global cooling at that time. The coarse fractions (>30μm) of the dust deposits were examined using the EDXA device for mineral identification. The quartz content has a decrease trend during 7~2MaBP, then increase rapidly at about 2MaBP. After 2MaBP, quartz content continues to decrease. The Ca-plagioclase content / quartz content ratio increase at about 3.6MaBP. The ratio shows a peak of 3-6 fold values at about 2.5~1.8MaBP, the cause of this is still unknown. The Ca-plagioclase content / quartz content ratio continues to increase after 1 MaBP. The flowing can be regarded as the conclusion remarks of this study: Some of the red clay sediment of the Chinese Loess Plateau (at least Lingtai and Jingchuan red clays) is eolian in origin. The quartz grains from dust deposits throughout the past seven million yeas showed the clues of glacial and frost processes. This indicates that the high mountains of western China reached a certain altitude to favor the glacial and/or frost processes at least seven millions years before. The weathering intensities of the past seven nnillion yeas have a decreasing trend. In about 5~4.5MaBP, the weathering is relatively weak, and the dust supply is relatively low. At about 3.6MaBP and 2.6MaBP, the dust supply increased significantly. The mineralogical composition, the quartz surface feature and the quartz oxygen isotope composition were influenced by the uplift of the Tibetan Plateau. The Plateau may have reached a certain altitude to generate the arid regions of inland China and favor the glacial and frost weathering. And it underwent a phased uplift, which have uplift events at about 3.6MaBP and 2.6MaBP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ultrahigh Pressure Metamorphic (UHPM) eclogite, which was resulted from deep subduction of crustal continent, is very significant due to its continental dynamic implications. Further more, this kind of rocks experienced great P-T, fluid and stresses changes during its forming and exhumation, causing mineral reactions occur intensively, which resulted in a lot of fantastic micro-texture. The micro-texture was preserved duo to a rapid exhumation of the eclogite. This PhD dissertation takes such micro-textures in 10 Donghai eclogite samples South Sulu UHPM terrene, as research object to reveal the transformation of the eclogite to amphibolite. Microscope and Scanning Electron Microscope were employed to observe the micro-texture. Basing on microprobe analysis of minerals, the ACF projections and iso-con analysis were used to uncover the mineral reactions during the transformation. Micro-texture observation (both of Microcopy and Electron Scanning Microscope), demonstrated: l.The peak mineral assemblage of the researched Donghai eclogites is garnet + omphacite + rutile (+ kyanite + aptite +coesite). 2.The transformation of the Donghai eclogite to amphibolite can be divided into two stages: The earlier one is Symplectization, resulting in the forming of diopside + albite (+magnetite) symplectite that occurred only along the boundary between two adjacent omphacite grains. Other minerals were not involved in such reaction. The latter stage is Fluid-Infiltration of the eclogite, which was caused by fluid-intrusion. The infiltration is demonstrated by amphibolization of the symplectite, decomposition of garnet and the forming of some hydrous minerals such as phengite and epidote, and resulted in an amphibole + plagioclase + phengite + epidote or ziosite assemblage. Basing on microprobe analysis of the minerals, ACF projections indicated: In the ACF diagrams, the two joint lines of peak Grt + Omp and Dio + Ab crossed at Omp projection-point, indicating that the garnet had not taken part in the forming reaction of the Dio + Ab symplectite, just like that had been pointed out by micro-texture observation. In the ACF diagrams, the hornblende + plagioclase + epidote + phengite quadrilateral intersected with Dio + Ab + Grt triangle, demonstrating that the hydrous mineral assemblage was formed by fluid infiltration through garnet, diopside and albite. Iso-con (mass-balance) analysis of the symplectization and infiltration reveals: 1.The symplectization of the omphacite has a very complex mass exchange: Some symplectite gained only silicon from its surroundings; and some one requires Ca, but provides Na to its surroundings; while other symplectite provides Ca, Mg and Fe to its surroundings. 2.The infiltration cause variable mass exchanges occurring among the garnet, diopside and albite: In some eclogite sample, no mass, except H2O, exchange occurred during the infiltration. Meanwhile, there was not any hydrous mineral except hornblende formed in the sample accordingly. In some samples, the mass exchange among the three minerals is complex: amphibolization of the diopside in a symplectite gained Al from garnet, and provided Si and Ca to its surrounding, resulting in a Si, Ca and Al-rich fluid. Correspondingly, there was a lot of phengite and ziosite occurred in the sample. In other samples, the amphibolization of a symplectite provided Fe and Mg besides Si and Ca to its surrounding while gained Al. In such kind of sample, epidote occurred within the hydrous mineral assemblage. Synthesizing the micro-texture observation, ACF analysis and iso-con analysis, we deduced the transformation procedure as following: 1. A symplectite after an omphacite was resulted by one, or two, or all of following mineral reactions together: Jd (Ca-Tsch) +SiO2=Ab (An) (1) 4NaA IS i.A+CaO=2NaAlS i308+Na20+CaAl2S 1208 (2) 2NaAlSi2OB (Jd in Omp)+CaMgSi;,0B(Dio in Omp)-2NaAlSi:,O"(Ab)+Ca0+Mg0 (3) 2(CaAl2Si0fi) (Ca-tsch in Omp)+CaFeSi2O6(Hed in 0mp)-H>2CaAl2Si208(An)+Ca0 + FeO (4) A CO2-rich fluid is suggested as cataclysm for the above reactions, which largely increased the mobility of Ca, Mg and Na resulted from reaction (2), (3) and (4). The immobile product Fe2* combined with rutile to form ilmenite, resulting in rutile + ilmenite symplectite. Or, the Fe was precipitated as hematite locally. A procedure of the fluid infiltration as following is suggested: I .A hydrous fluid intruded into the eclogite, and reacted first with garnet to form hornblende and extra Al, resulting in a hornblende film around the garnet grain and an Al-rich fluid. 2.The Al-rich fluid infiltrated through the symplectite, OH" and part of the Al in the fluid combined with Dio while some Si and Ca in the Dio were dissolved made the Dio transferred to amphibole. Meanwhile, plagioclase-type cation exchange occurred between the fluid and plagioclase in the symplectite, making the plagioclase have a higher An-content. 3.Above infiltration and cation exchange resulted in an Al, Si, Ca (and K, providing the primary hydrous fluid contain K)-rich fluid. 4.Under suitable conditions, the solute in the fluid precipitated to form phengite firstly. After the K element in the fluid was consumed up, ziosite or epidote was formed. If the fluid did not contain any K. element, only ziosite or epidote was precipitated. For those eclogites, where all omphacite had been replaced by symplectite before infiltration, neither element exchange occurred, nor did phengite or epidote form during the infiltration. At the last stage, the garnet was oxidized and breakdown: garnet + H2O = epidote + hornblende + hematite, due to more and more fluid intruding into the eclogite. At this time, all the peak minerals were replaced by amphibolite-phase ones, and the eclogite transformed to an amphibolite completely. Tentative pressure calculation indicates that the infiltration occurred at 3-6kbar (about 10-20km depth), where the deformation mechanics transformed from brittle to ductile yield. At such depth, the surface water can permeate the rocks through fault system, causing a rapid cooling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anduo area is located in the Central Tibet, the middle segment of the Bangonghu-Nujiang suture. Anduo Block is the northern part of Lhasa terrane. The relationships among the different geological bodies were determined during the 1: 250000 regional geological surveying. Petrography, petrologic geochemistry, isotopic geochemistry and geochronology of igneous rocks from the suture and granitoids from Anduo Block were analyzed systematically as a whole for the first time. Then, their tectonic setting and history are discussed.Anduo ophiolitic melange consists of metamorphic peridotites, cumulates, plagiogranites, sheeted dykes swarm, pillow lava and radiolarian cherts. The concentration of Cr and Ni in the metamorphic peridotites is very high, with Mg# about 0.94 ~ 0.97, higher 87Sr/86Sr and Pb isotopic ratios, and lower 143Nd/i44Nd ratio. LREE is enriched relative to HREE and positive Eu anomaly is very clear. The REE distribution curve is U shape. Nb and Ta anomalies from cumulate gabbro and sheeted dyke swarm are not clear, while that are slightly negative from pillow lava. Plagiogranite belongs to strong calc-alkaline series with high Si, middle Al, low Fe, Mg and low K contents. Eu anomaly (~ 1.23) from plagiogranites is slightly positive. The character of all components of ophiolite is similar to that of the MORB, while to some extent the ophiolite was influenced by crustal material. Anduo ophiolite formed in a mature back-arc basin. Additionally, intermediate acidity volcanic rocks within Anduo phiolite melange are island arc calc-alkline rocks related to ocean subduction.The early-middle Jurassic plutonic rocks are tonalite, granodiorite bearing-phenocryst, magaporphyritic hornblende monzogranite, magaporphyritic monzogranite, monzogranite bearing-phenocryst and syenogranite in turn. They belong to calc-alkaline series which developed from middle K to high K series temporally. REE distribution curves of all plutonic rocks are similar and parallel to each other. SREE and negative Eu anomaly values decrease. In the multi-element spider diagram, the curves of different plutons are similar to each other, but troughs of Nb, Sr, P and Ti from young plutons become more evident. This suggests that thereare some closely petrogenetic affinities among plutonic rocks which make up amagma plutonism cycle of the early-middle Jurassic. Magma source is mainly crustal,but abundant mafic microgranular enclaves within granitoids indicate that crastalmagma should be mixed with mantle-derived magma and the mantle-derived magmadecreased subsequently. Tonalite has features of I-type granite, magaporphyriticmonzogranite is transition type, and monzogranite bearing-phenocryst is S-typegranite. The characteristic of granitoids from Anduo Block suggest that the formingtectonic setting is active continental margin.Reliable zircon U-Pb SHRIMP ages are obtained in the study area firstly. Plagiogranite from the Anduo ophiolite of the Bangonghu-Nujiang suture is 175.1 Ma, and granitoids from Anduo Block is 172.6-185.4 Ma. Additionally, plagioclase from the plagiogranite dates a 40Ar/39Ar age of 144 Ma, while biotite and hornblend from granitoids of Anduo Block give a 163-165 Ma.Similar cooling ages of plagiogranite from the Anduo ophiolitic melange and granitoids from Anduo Block and the spatial distribution of the ophiolitic rocks between Anduo, Naqu, and Shainzha area suggest that bilateral subduction of the Bangonghu-Nujiang oceanic basin took place in the early-middle Jurassic. During this subduction, Anduo ophiolitic rocks were related to north subduction of the Bangonghu-Nujiang oceanic basin and Anduo back-arc basin spreading, while granitoids from Anduo Block were related to south subduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The High Grade Metamorphic Complex (HGMC) of Variscan basement of north Sardinia is characterized by the widespread of migmatites. This study is focused on two localities of NE Sardinia (Porto Ottiolu and Punta Sirenella) where ortho- and para-derivates migmatites outcrop. A geological and structural survey was carried out, leading to the realization of a geological schematic map of Punta Sirenella area. Several samples of different rocks were collected for petrographic, micro-structural minero-chemical and geochemical analyses. In the Porto Ottiolu area three main deformation phases have been identified; D1, characterized by tight folds with sub-horizontal axes, rarely preserved in paragneisses; D2, that produce a pervasive foliation oriented N100° 45°SW marked by biotite and sillimanite blastesis and locally transposed by shear zone oriented N170°; D3, late deformation phase caused symmetric folds with sub-horizontal axes with no axial plane schistosity. Leucosomes form pods and layers along S2 schistosity but also leucosomes along shear zones have been observed. In the Punta Sirenella area, three main deformation phases have been identified; D1, is manifested by the transposition of centimeter-sized leucosomes and is rarely observed in paragneisses were produce open folds with sub-vertical axes; D2, NW-SE oriented on whose XY plane three mineralogical lineation (quartz+plagioclase, fibrolite+quarz and muscovite) lie; D3, a ductile-brittle deformation phase that produce a mylonitc S3 foliation that locally become the most evident schistosity in the field oriented N140° steeply dipping toward NE. In both areas, leucosomes of sedimentary-derived migmatites are generally trondhjemitic pointing out for a H2O fluxed melting reaction, but also granitic leucosomes have been found, produced by muscovite dehydration melting. Leucosomes of migmatitic orthogneiss instead, have granitic compositions. Migmatization started early, during the compressional and crustal thickening (sin-D1, pre-D2) and was still active during exhumation stage. For each studied outcrop of migmatite pseudosections for the average mesosome composition have been calculated; these pseudosections have been used to model the P-T conditions of anatexis on the basis of the melt volume (%) of melt, Si/Al and Na/K molar ratios, modal content of garnet and Si content in metamorphic white mica. Further pseudosections have been calculated for the average composition of leucosomes in order to define the P-T conditions of the end of the crystallization through intersection of solidus curve and isopleths of Si content in white mica and/or XMg ratio in biotite. Thermodynamic modeling on ortho- and sedimentary-derived migmatites of Punta Sirenella yield P-T conditions of 1.1-1.3 GPa - 670-740°C for migmatitic event and 0.75-0.90 GPa - 660-730°C for the end of crystallization. These conditions are fit well with previous studies on adjacent rocks. Modeling of Porto Ottiolu ortho- and sedimentary-derived migmatites yield P-T conditions of 0.85-1.05 GPa - 690-730°C for migmatitic event and 0.35-0.55 GPa - 630-690°C strongly affected by re-equilibration during exhumation, expecially for crystallization conditions. Geochemical analyses of samples belonging to Porto Ottiolu and Punta Sirenella orthogneisses show a strong link with those of other orthogneisses outcropping in NE Sardinia (for instance, Lode-Mamone and Golfo Aranci) that are considered the intrusive counterparts of middle-Ordovician metavolcanics rocks outcropping in the Nappe Zone. Thus, the studied ortogneiss bodies, even lacking radiometric data, can be considered as belonging to the same magmatic cycle.