899 resultados para peptide binding
Resumo:
A blood coagulation factor IX-binding protein (TSV-FIX-BP) was isolated from the snake venom of Trimeresurus stejnegeri. On SDS-polyacrylamide gel electrophoresis, TSV-FIX-BP showed a single band with an apparent molecular weight of 23,000 under non-reducing conditions. and two distinct bands with apparent molecular weights of 14,800 and 14,000 under reducing conditions. cDNA clones containing the coding sequences of TSV-FIX-BP were isolated and sequenced to determine the structure of the precusors of TSV-FIX-BP subunits. The deduced amino acid sequences of two subunits of TSV-FIX-BP were confirmed by N-terminal protein sequencing and trypsin-digested peptide mass fingerprinting. TSV-FIX-BP was a nonenzymatic C-type lectin-like anti-coagulant. The anti-coagulant activity of TSV-FIX-BP was mainly caused by its dose dependent interaction with blood coagulation factor IX but not with blood coagulation factor X. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A platelet glycoprotein Ib-binding protein, termed TSV-GPIb-BP, was isolated from the venom of Trimeresurus stejnegeri. On SDS-polyacrylamide gel electrophoresis, TSV-GPIb-BP showed a single band with an apparent molecular weight of 28,000 and two distinct bands with apparent molecular weights of 16,000 and 15,000 under non-reducing and reducing conditions, respectively. cDNA clones containing the coding sequences for both TSV-GPIb-BP subunits were isolated and sequenced. The deduced amino acid sequences of TSV-GPIb-BP subunits were confirmed by N-terminal protein sequencing and trypsin-digested peptide mass fingerprinting. Interestingly, the a subunit of TSV-GPIb-BP is identical to that of alboaggregin-B, and the sequence identity of their beta subunits is 94.3%. TSV-GPIb-BP inhibited ristocetin-induced human platelet agglutination in platelet-rich plasma under lower dosages (<5 mug/ml). On the other hand, it directly aggregated washed human platelets in the absence of additional Ca2+ or any other cofactors under higher dosages (>5 mug/ml). This platelet aggregation activity was dose-dependently inhibited by specific GPIbalpha antibodies, but not by those antibodies against platelet GPIa, GPIIa, GPIIb and GPIIIa. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel disintegrin, jerdonatin, was purified to homogeneity from Trimeresurus jerdonii venom by gel filtration and reversed-phase high-pressure liquid chromatography. We isolated the cDNA encoding jerdonatin from the snake venom gland. Jerdonatin cDNA precursor,;encoded pre-peptide, metalloprotease and disintegrin domain. Jerdonatin is composed of 72 amino acid residues including 12 cysteines and the tripeptide sequence Arg-Gly-Asp (RGD), a well-known characteristic of the disintegrin family. Molecular mass of jerdonatin was determined to be 8011 Da by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Jerdonatin inhibited ADP- and collagen-induced human platelet aggregation with IC50 of 123 and 135 nM, respectively. We also investigated the effect of jerdonatin on the binding of B6D2F1 hybrid mice spermatozoa to mice zona-free eggs and their subsequent fusion. Jerdonatin significantly inhibited sperm-egg binding in a concentration-dependent manner, but had no effect on the fusion of sperm-egg. These results indicate that integrins on the egg play a role in mammalian fertilization. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Cell-material interactions are crucial for cell adhesion and proliferation on biomaterial surfaces. Immobilization of biomolecules leads to the formation of biomimetic substrates, improving cell response. We introduced RGD (Arg-Gly-Asp) sequences on poly-ε-caprolactone (PCL) film surfaces using thiol chemistry to enhance Schwann cell (SC) response. XPS elemental analysis indicated an estimate of 2-3% peptide functionalization on the PCL surface, comparable with carbodiimide chemistry. Contact angle was not remarkably reduced; hence, cell response was only affected by chemical cues on the film surface. Adhesion and proliferation of Schwann cells were enhanced after PCL modification. Particularly, RGD immobilization increased cell attachment up to 40% after 6 h of culture. It was demonstrated that SC morphology changed from round to very elongated shape when surface modification was carried out, with an increase in the length of cellular processes up to 50% after 5 days of culture. Finally RGD immobilization triggered the formation of focal adhesion related to higher cell spreading. In summary, this study provides a method for immobilization of biomolecules on PCL films to be used in peripheral nerve repair, as demonstrated by the enhanced response of Schwann cells.
Resumo:
In vertebrates, folliculogeneis establishes an intricate system for somatic cell-oocyte interaction, and ultimately leads to the acquisition of their respective competences. Although the formation process and corresponding interactions are strikingly similar in diverse organisms, knowledge of genes and signaling pathways involved in follicle formation is very incomplete and the underlying molecular mechanisms remain enigmatic. CNBP has been identified for more than ten years, and the highest level of CNBP transcripts has been observed in adult zebrafish ovary, but little is known about its functional significance during folliculogeneis and oogenesis. In this study, we clone CNBP cDNA from gibel carp (Carassius auratus gibelio), and demonstrate its predominant expression in gibel carp ovary and testis not only by RTPCR but also by Western blot. Its full-length cDNA is 1402 bp, and has an ORF of 489 nt for encoding a peptide of 163 aa. And its complete amino acid sequence shared 68.5%-96.8% identity with CNBPs from other vertebrates. Based on the expression characterization, we further analyze its expression pattern and developmental behaviour during folliculogeneis and oogenesis. Following these studies, we reveal an unexpected discovery that the CagCNBP is associated with follicular cells and oocytes, and significant distribution changes have occurred in degenerating and regenerating follicles. More interestingly, the CagCNBP is more highly expressed in some clusters of interconnected cells within ovarian cysts, no matter whether the cell clusters are formed from the original primordial germ cells or from the newly formed cells from follicular cells that invaded into the atretic oocytes. It is the first time to reveal CNBP relevance to folliculogeneis and oogenesis. Moreover, a similar stage-specific and cell-specific expression pattern has also been observed in the gibel carp testis. Therefore, further studies on CNBP expression pattern and developmental behaviour will be of significance for understanding functional roles of CNBP during gametogenests. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A tumor necrosis factor receptor-associated factor 2 binding protein (T2BP) gene was isolated from the grass carp (Ctenopharyngodon idellus) by utilizing suppression subtractive hybridization (SSH) and rapid amplification of cDNA ends (RACE). The grass carp T2BP (GT2BP) gene contains an open reading frame of 579 nucleotide(s) (nt), encoding 193 amino acids, with 23 nt 5'-untranslated region and a long 3'-untranslated region of 434 nt including poly (A), 1 AUUUA motif and 4 AUUUUA motifs. No signal peptide has been detected in the predicted GT2BP, but a characteristic forkhead associated domain is present. The GT2BP mRNA shares 83% identity with the zebrafish DNA sequence, and they both have no introns in the genomic DNA. The putative transcription factor binding sites of GT2BP include two C/EBP alpha binding sites, and one c-Jun binding, one AP-1 binding, and one nuclear factor kappa B (NF kappa B) binding sites. Southern blot analysis revealed that the GT2BP was a single-copy gene. Individual difference was observed in GT2BP expression in examined organs of healthy grass carp. However, the expression of GT2BP in all examined organs in a fish with the highest copepod infection level and the significantly higher expression level in spleen and liver in infected fish may indicate its up-regulation with the parasite infection. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Amyloid beta peptide plays a critical role in the pathogenesis of Alzheimer's disease (AD). Metal ions are highly enriched in cerebral amyloid deposits in AD and are proposed to be able to mediate A beta conformation. Therefore, a rapid, low-cost, and sensitive detection of metal-induced A beta aggregation and their relation to AD is clearly needed for the clinical diagnosis and treatment. In this report, we study metal-induced A beta aggregation by a rapid, label-free electrochemical method and monitor both the aggregation kinetics and the morphology in the absence or presence of Zn (II) and Cu (II).
Resumo:
In this report, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to study the binding interactions between calmodulin and two target peptides (melittin and substance P). Various matrix conditions were tested and the less acidic matrix DHAP and THAP were found to favor the survival of the intact calcium-calmodulin as well as the calmodulin-peptide complexes. However, the application of direct MALDI-MS to detect the intact complexes turned out to be very difficult due to the dissociation of the complexes and the formation of nonspecific aggregates. In contrast, the specific binding of the target peptides to calmodulin could be easily deduced using intensity-fading (IF) MALDI-MS. Compared with the nonbinding control, clear reduction in the ion abundances of the target peptides was observed with the addition of calmodulin.
Resumo:
A polymeric gene carrier was developed to deliver vascular endothelial growth factor (VEGF) small interfering RNA (siRNA) for prostate cancer cells in a target-specific manner. Prostate cancer-binding peptide (PCP) was conjugated with polyethylenimine (PEI) via a poly(ethylene glycol) (PEG) linker (PEI-PEG-PCP). The PEI-PEG-PCP conjugate could effectively condense siRNA to form stable polyelectrolyte complexes (polyplexes) with an average diameter of approximately 150 nm in an aqueous solution. VEGF siRNA/PEI-PEG-PCP polyplexes exhibited significantly higher VEGF inhibition efficiency than PCP-unmodified polycationic carriers (PEI-PEG or PEI) in human prostate carcinoma cells (PC-3 cells). The enhanced gene silencing activity of VEGF siRNA/PEI-PEG-PCP was maintained even under serum conditions, owing to the steric stabilization of the polyplexes with hydrophilic PEG grafts. Confocal microscopic studies revealed that the siRNA/PEI-PEG-PCP polyplexes were delivered into PC-3 cells in a PCP ligand-specific manner.
Resumo:
A pattern recognition protein (PRP), lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) cDNA was cloned from the haemocyte of Chinese shrimp Fenneropenaeus chinensis by the techniques of homology cloning and RACE. Analysis of nucleotide sequence revealed that the full-length cDNA of 1,275 bp has an open reading frame of 1,098 bp encoding a protein of 366 amino acids including a 17 amino acid signal peptide. Sequence comparison of the deduced amino acid sequence of F. chinensis LGBP showed a high identity of 94%, 90%, 87%, 72% and 63% with Penaeus monodon BGBP, Litopenaeus stylirostris LGBP, Marsupenaeu japonicus BGBP, Homarus gammarus BGBP and Pacifastacus leniusculus LGBP, respectively. The calculated molecular mass of the mature protein is 39,857 Da with a deduced pI of 4.39. Two putative integrin binding motifs, RGD (Arg-Gly-Asp) and a potential recognition motif for beta-1,3-linkage of polysaccharides were observed in LGBP sequence. RT-PCR analysis showed that LGBP gene expresses in haemocyte and hepatopancreas only, but not in other tissues. Capillary electrophoresis RT-PCR method was used to quantify the variation of mRNA transcription level during artificial infection with heat-killed Vibrio anguillarum and Staphylococcus aureusin. A significant enhancement of LGBP transcription was appeared at 6 h post-injection in response to bacterial infection. These results have provided useful information to understand the function of LGBP in shrimp.
Resumo:
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.
Resumo:
BACKGROUND: Lower concentrations of the insulin-like growth factor binding protein-1 (IGFBP-1) and elevated concentrations of insulin or C-peptide have been associated with an increase in colorectal cancer risk (CRC). However few studies have evaluated IGFBP-1 and C-peptide in relation to adenomatous polyps, the only known precursor for CRC. METHODS: Between November 2001 and December 2002, we examined associations between circulating concentrations of insulin, C-peptide, IGFBP-1 and apoptosis among 190 individuals with one or more adenomatous polyps and 488 with no adenomatous polyps using logistic regression models. RESULTS: Individuals with the highest concentrations of C-peptide were more likely to have adenomas (OR = 2.2, 95% CI 1.4-4.0) than those with the lowest concentrations; associations that appeared to be stronger in men (OR = 4.4, 95% CI 1.7-10.9) than women. Individuals with high insulin concentrations also had a higher risk of adenomas (OR = 3.5, 95% CI 1.7-7.4), whereas higher levels of IGFBP-1 were associated with a reduced risk of adenomas in men only (OR = 0.3, 95% CI 0.1-0.7). Overweight and obese individuals with higher C-peptide levels (>1(st) Q) were at increased risk for lower apoptosis index (OR = 2.5, 95% CI 0.9-7.1), an association that remained strong in overweight and obese men (OR = 6.3, 95% CI 1.0-36.7). Higher levels of IGFBP-1 in overweight and obese individuals were associated with a reduced risk of low apoptosis (OR = 0.3, 95% CI 0.1-1.0). CONCLUSIONS: Associations between these peptides and the apoptosis index in overweight and obese individuals, suggest that the mechanism by which C-peptide could induce adenomas may include its anti-apoptotic properties. This study suggests that hyperinsulinemia and IGF hormones predict adenoma risk, and that outcomes associated with colorectal carcinogenesis maybe modified by gender.
Resumo:
Resorbable scaffolds such as polyglycolic acid (PGA) are employed in a number of clinical and tissue engineering applications owing to their desirable property of allowing remodeling to form native tissue over time. However, native PGA does not promote endothelial cell adhesion. Here we describe a novel treatment with hetero-bifunctional peptide linkers, termed "interfacial biomaterials" (IFBMs), which are used to alter the surface of PGA to provide appropriate biological cues. IFBMs couple an affinity peptide for the material with a biologically active peptide that promotes desired cellular responses. One such PGA affinity peptide was coupled to the integrin binding domain, Arg-Gly-Asp (RGD), to build a chemically synthesized bimodular 27 amino acid peptide that mediated interactions between PGA and integrin receptors on endothelial cells. Quartz crystal microbalance with dissipation monitoring (QCMD) was used to determine the association constant (K (A) 1 x 10(7) M(-1)) and surface thickness (~3.5 nm). Cell binding studies indicated that IFBM efficiently mediated adhesion, spreading, and cytoskeletal organization of endothelial cells on PGA in an integrin-dependent manner. We show that the IFBM peptide promotes a 200% increase in endothelial cell binding to PGA as well as 70-120% increase in cell spreading from 30 to 60 minutes after plating.
Resumo:
During mammalian fertilization, the exposure of the inner acrosomal membrane (IAM) after acrosomal exocytosis is essential for the secondary binding between sperm and zona pellucida (ZP) of the oocyte, a prerequisite for sperm penetration through the ZP. The identification of the sperm protein(s) responsible for secondary binding has posed a challenge for researchers. We were able to isolate a sperm head fraction in which the IAM was exposed. Attached to the IAM was an electon dense layer, which we termed the IAM extracellular coat (IAMC). The IAMC was also observable in acrosome reacted sperm. High salt extraction removed the IAMC including a prominent 38 kDa polypeptide, referred to as IAM38. Antibodies raised against IAM38 confirmed its presence in the IAMC of intact, sonicated, and acrosome-reacted sperm. Sequencing of IAM38 revealed it as the ortholog of porcine SP38, a protein that was found to bind specifically to ZP2 but whose intra-acrosomal location was not known. We showed that IAM38 occupied the leading edge of sperm contact with the zona pellucida during fertilization, and that secondary binding and fertilization were inhibited in vitro by antibodies directed against IAM38. As for the mechanism of secondary sperm-zona binding by IAM38, we provided evidence that the synthetic peptide derived from the ZP2-binding motif of IAM38 had a competitive inhibitory effect on both sperm-zona binding and fertilization while its mutant form was ineffective. In summary, our study provides a novel approach to obtain direct information on the peripheral and integral protein composition of the IAM and consolidates IAM38 as a genuine secondary sperm-zona binding protein. In addition, our investigation also provides an ultrastructural description of the origin, expression and assembly of IAM38 during spermatogenesis. It shows that IAM38 is originally secreted by the Golgi apparatus as part of the dense contents of the proacrosomic granules but later, during acrosome capping phase of spermiogenesis, is redistributed to the inner periphery of the acrosomal membrane. This relocation occurs at the time of acrosomal compaction, an obligatory structural change that fails to occur in Zpbp1-/- knockout mice, which do not express IAM38 and are infertile.