992 resultados para parameter uncertainty
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on the new information-theoretic concept of one-step Kerridge inaccuracy (OKI). Under several regulatory conditions, we establish a convergence result (and some limited strong consistency results) for our proposed online OKI-based parameter estimator. In simulation studies, we illustrate the global convergence behaviour of our proposed estimator and provide a counter-example illustrating the local convergence of other popular HMM parameter estimators.
Cooperative choice and its framing effect under threshold uncertainty in a provision point mechanism
Resumo:
This paper explores how threshold uncertainty affects cooperative behaviors in the provision of public goods and the prevention of public bads. The following facts motivate our study. First, environmental (resource) problems are either framed as public bads prevention or public goods provision. Second, the occurrence of these problems is characterized by thresholds that are interchangeably represented as "nonconvexity," "bifurcation," "bi-stability," or "catastrophes." Third, the threshold location is mostly unknown. We employ a provision point mechanism with threshold uncertainty and analyze the responses of cooperative behaviors to uncertainty and to the framing for each type of social preferences categorized by a value orientation test. We find that aggregate framing effects are negligible, although the response to the frame is the opposite depending on the type of social preferences. "Cooperative" subjects become more cooperative in negative frames than in positive frames, whereas "individualistic" subjects are less cooperative in negative frames than in positive ones. This finding implies that the insignificance of aggregate framing effects arises from behavioral asymmetry. We also find that the percentage of cooperative choices non-monotonically varies with the degree of threshold uncertainty, irrespective of framing and value orientation. Specifically, the degree of cooperation is highest at intermediate levels of threshold uncertainty and decreases as the uncertainty becomes sufficiently large.
Resumo:
Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.
Resumo:
Practice uncertainty occurs when health care providers feel uncomfortable in response to unfamiliar or challenging patient care situations. Practice uncertainty is inevitable in health care, and there are many contextual factors that can lead to either good or bad outcomes for patients and health care providers. Practice uncertainty is not a well-established concept in the literature, perhaps because of the predominant empirical paradigm and the high value placed on certainty within current health care culture. This study was conducted to explore practice uncertainty and bring this topic into the foreground as a first step toward practice evolution. A shift in the perception of practice uncertainty may change the way in which practitioners experience this phenomenon. This process must start with nursing educators recognizing and acknowledging this phenomenon when it occurs.
Resumo:
The hemodynamic response function (HRF) describes the local response of brain vasculature to functional activation. Accurate HRF modeling enables the investigation of cerebral blood flow regulation and improves our ability to interpret fMRI results. Block designs have been used extensively as fMRI paradigms because detection power is maximized; however, block designs are not optimal for HRF parameter estimation. Here we assessed the utility of block design fMRI data for HRF modeling. The trueness (relative deviation), precision (relative uncertainty), and identifiability (goodness-of-fit) of different HRF models were examined and test-retest reproducibility of HRF parameter estimates was assessed using computer simulations and fMRI data from 82 healthy young adult twins acquired on two occasions 3 to 4 months apart. The effects of systematically varying attributes of the block design paradigm were also examined. In our comparison of five HRF models, the model comprising the sum of two gamma functions with six free parameters had greatest parameter accuracy and identifiability. Hemodynamic response function height and time to peak were highly reproducible between studies and width was moderately reproducible but the reproducibility of onset time was low. This study established the feasibility and test-retest reliability of estimating HRF parameters using data from block design fMRI studies.
Resumo:
Purpose This study aims to identify factors that facilitate or inhibit middle managers' experience of uncertainty management during organizational change. Design/methodology/approach The approach is qualitative and involved interviews with 40 middle managers from a range of organizations. Findings Analysis revealed that at the pre‐implementation stage, uncertainty focused on the strategic concept of the change, whereas at implementation, uncertainty related to the appropriate procedures to implement. Middle managers’ uncertainty management was found to be important in assisting their employees in the change transition. The factors identified as being either facilitators or barriers to uncertainty management focused on themes related to the design of change, communication with both senior management and their own staff, support from senior management, role conflict, and peer interaction. A model was created to link facilitators and barriers with uncertainty to guide future research. Research limitations/implications Implications for organizational change research along with practical implications are discussed. Originality/value This study provides insight into the positive contributions middle managers can make during change, along with suggesting what factors are facilitators or barriers to this positive role.
Resumo:
This study developed and tested a model of job uncertainty for survivors and victims of downsizing. Data were collected from three samples of employees in a public hospital, each representing three phases of the downsizing process: immediately before the announcement of the redeployment of staff, during the implementation of the downsizing, and towards the end of the official change programme. As predicted, levels of job uncertainty and personal control had a direct relationship with emotional exhaustion and job satisfaction. In addition, there was evidence to suggest that personal control mediated the relationship between job uncertainty and employee adjustment, a pattern of results that varied across each of the three phases of the change event. From the perspective of the organization’s overall climate, it was found that levels of job uncertainty, personal control and job satisfaction improved and/or stabilized over the downsizing process. During the implementation phase, survivors experienced higher levels of personal control than victims, but both groups of employees reported similar levels of job uncertainty. We discuss the implications of our results for strategically managing uncertainty during and after organizational change.
Resumo:
In an ever-changing and globalised world there is a need for higher education to adapt and evolve its models of learning and teaching. The old industrial model has lost traction, and new patterns of creative engagement are required. These new models potentially increase relevancy and better equip students for the future. Although creativity is recognised as an attribute that can contribute much to the development of these pedagogies, and creativity is valued by universities as a graduate capability, some educators understandably struggle to translate this vision into practice. This paper reports on selected survey findings from a mixed methods research project which aimed to shed light on how creativity can be designed for in higher education learning and teaching settings. A social constructivist epistemology underpinned the research and data was gathered using survey and case study methods. Descriptive statistical methods and informed grounded theory were employed for the analysis reported here. The findings confirm that creativity is valued for its contribution to the development of students’ academic work, employment opportunities and life in general; however, tensions arise between individual educator’s creative pedagogical goals and the provision of institutional support for implementation of those objectives. Designing for creativity becomes, paradoxically, a matter of navigating and limiting complexity and uncertainty, while simultaneously designing for those same states or qualities.
Resumo:
Engineers and asset managers must often make decisions on how to best allocate limited resources amongst different interrelated activities, including repair, renewal, inspection, and procurement of new assets. The presence of project interdependencies and the lack of sufficient information on the true value of an activity often produce complex problems and leave the decision maker guessing about the quality and robustness of their decision. In this paper, a decision support framework for uncertain interrelated activities is presented. The framework employs a methodology for multi-criteria ranking in the presence of uncertainty, detailing the effect that uncertain valuations may have on the priority of a particular activity. The framework employs employing semi-quantitative risk measures that can be tailored to an organisation and enable a transparent and simple-to-use uncertainty specification by the decision maker. The framework is then demonstrated on a real world project set from a major Australian utility provider.
Resumo:
Stochastic (or random) processes are inherent to numerous fields of human endeavour including engineering, science, and business and finance. This thesis presents multiple novel methods for quickly detecting and estimating uncertainties in several important classes of stochastic processes. The significance of these novel methods is demonstrated by employing them to detect aircraft manoeuvres in video signals in the important application of autonomous mid-air collision avoidance.
Resumo:
In this paper we provide estimates for the coverage of parameter space when using Latin Hypercube Sampling, which forms the basis of building so-called populations of models. The estimates are obtained using combinatorial counting arguments to determine how many trials, k, are needed in order to obtain specified parameter space coverage for a given value of the discretisation size n. In the case of two dimensions, we show that if the ratio (Ø) of trials to discretisation size is greater than 1, then as n becomes moderately large the fractional coverage behaves as 1-exp-ø. We compare these estimates with simulation results obtained from an implementation of Latin Hypercube Sampling using MATLAB.
Resumo:
In this paper the issue of finding uncertainty intervals for queries in a Bayesian Network is reconsidered. The investigation focuses on Bayesian Nets with discrete nodes and finite populations. An earlier asymptotic approach is compared with a simulation-based approach, together with further alternatives, one based on a single sample of the Bayesian Net of a particular finite population size, and another which uses expected population sizes together with exact probabilities. We conclude that a query of a Bayesian Net should be expressed as a probability embedded in an uncertainty interval. Based on an investigation of two Bayesian Net structures, the preferred method is the simulation method. However, both the single sample method and the expected sample size methods may be useful and are simpler to compute. Any method at all is more useful than none, when assessing a Bayesian Net under development, or when drawing conclusions from an ‘expert’ system.
Resumo:
We present two six-parameter families of anisotropic Gaussian Schell-model beams that propagate in a shape-invariant manner, with the intensity distribution continuously twisting about the beam axis. The two families differ in the sense or helicity of this beam twist. The propagation characteristics of these shape-invariant beams are studied, and the restrictions on the beam parameters that arise from the optical uncertainty principle are brought out. Shape invariance is traced to a fundamental dynamical symmetry that underlies these beams. This symmetry is the product of spatial rotation and fractional Fourier transformation.
Resumo:
Recently, it has been shown that the inclusion of higher signal harmonics in the inspiral signals of binary supermassive black holes (SMBH) leads to dramatic improvements in the parameter estimation with Laser Interferometer Space Antenna (LISA). In particular, the angular resolution becomes good enough to identify the host galaxy or galaxy cluster, in which case the redshift can be determined by electromagnetic means. The gravitational wave signal also provides the luminosity distance with high accuracy, and the relationship between this and the redshift depends sensitively on the cosmological parameters, such as the equation-of-state parameter w = p(DE)/rho(DE) of dark energy. Using binary SMBH events at z < 1 with appropriate masses and orientations, one would be able to constrain w to within a few per cent. We show that, if the measured sky location is folded into the error analysis, the uncertainty on w goes down by an additional factor of 2-3, leaving weak lensing as the only limiting factor in using LISA as a dark energy probe.