994 resultados para outcrop


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solid-state-physics technique of electron spin resonance (ESR) has been employed in an exploratory study of marine limestones and impact-related deposits from Cretaceous-Tertiary (KT) boundary sites including Spain (Sopelana and Caravaca), New Jersey (Bass River), the U.S. Atlantic continental margin (Blake Nose, ODP Leg 171B/1049/A), and several locations in Belize and southern Mexico within -600 km of the Chicxulub crater. The ESR spectra of SO3(1-) (a radiation-induced point defect involving a sulfite ion substitutional for CO3(2-) which has trapped a positive charge) and Mn(2+) in calcite were singled out for analysis because they are unambiguously interpretable and relatively easy to record. ESR signal strengths of calcite-related SO3(1-) and Mn(2+) have been studied as functions of stratigraphic position in whole-rock samples across the KT boundary at Sopelana, Caravaca, and Blake Nose. At all three of these sites, anomalies in SO3(1-) and/or Mn(2+) intensities are noted at the KT boundary relative to the corresponding background levels in the rocks above and below. At Caravaca, the SO3(1-) background itself is found to be lower by a factor of 2.7 in the first 30,000 years of the Tertiary relative to its steady-state value in the last 15,000 years of the Cretaceous, indicating either an abrupt and quasi-permanent change in ocean chemistry (or temperature) or extinction of the marine biota primarily responsible for fixing sulfite in the late Cretaceous limestones. An exponential decrease in the Mn(2+) concentration per unit mass calcite, [Mn(2+)], as the KT boundary at Caravaca is approached from below (1/e characteristic length =1.4 cm) is interpreted as a result of post-impact leaching of the seafloor. Absolute ESR quantitative analyses of proximal impact deposits from Belize and southern Mexico group naturally into three distinct fields in a twodimensional [SO3(1-)]-versus-[Mn(2+)] scatter plot. These fields contain (I) limestone ejecta clasts, (II) accretionary lapilli, and (III) a variety of SO3(1-) -depleted/Mn(2+) enriched impact deposits. Data for the investigated non-impact-related Cretaceous and Tertiary marine limestones (Spain and Blake Nose) fall outside of these three fields. With reference to thes enon-impact deposits, fields I, II, and III can be respectively characterized as Mn(2+) -depleted, SO3(1-) -enhanced, and SO3(1-) -depleted. It is proposed that (1) field I represents calcites from the Yucatin Platform, and that the Mn(2+) -depleted signature can be used as an indicator of primary Chicxulub ejecta in deep marine environments and (2) field II represents calcites that include a component formed in the vapor plume, either from condensation in the presence of CO2/SO3(1-) -rich vapors, or reactions between CaO and CO2/SO3 rich vapors, and that this SO3(1-) -enhanced signature can be used as an indicator of impact vapor plume deposits. Given these two propositions, the ESR data for the Blake Nose deposits are ascribed to the presence of basal coarse calcitic Chicxulub ejecta clasts, while the finer components that are increasingly represented toward the top are interpreted to contain high- SO3(1-) calcite from the vapor plume. The apparently-undisturbed Bass River deposit may contain even higher concentrations of vapor-plume calcite. None of the three components included in field III appear to be represented at distal, deep marine KT-boundary sites; this field may include several types of impact-related deposits of diverse origins and diagenetic histories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depositional environments, stratigraphic relations, and 35 new AMS 14C dates at Cape Shpindler, Yugorski Peninsula, help constrain the late Pleistocene glacial and environmental history of the southern Kara Sea region. Fifteen- to fifty-meter-high coastal exposures reveal a complex package of shallow marine, fluvial, glacial, and postglacial deposits, and are documented here in a 19-km-long cross-section and eight vertical sections. The shallow marine (Unit A), estuarine or prodeltaic (Unit B), and fluvio-deltaic (Unit C) deposits contain an interglacial molluscan fauna, yield radiocarbon dates greater than 40 ka, and may correspond with a regional sea-level highstand during the Eemian. These units are overlain by a diamicton (Unit D), and are pervasively deformed by folds and low- to high-angle faults into a stacked glaciotectonic accretionary complex. The diamicton (Unit D) is a subglacial till, and associated massive ground ice with deformed debris bands (Unit E) appears to be relict glacier ice. Glaciotectonic structures document both southward- and northward-directed glacier movement. Above the till and associated glaciotectonic horizons lies 0- to 11-m-thick postglacial deposits of peatland, eolian, fluvial, and primarily lacustrine origin (Unit F). The postglacial deposits yield radiocarbon ages of 12.8 to 0.8 ka. Thus, at least one regional glaciation is prominently represented in the stratigraphy, and occurred probably after the Eemian but before 12.8 ka. We infer that the bulk of the glacial record corresponds with southward advance by an early Weichselian Kara Sea Ice Sheet, in agreement with other recently documented, regional records from Yamal Peninsula and the Pechora Basin. The timing and source of northward-directed glacier ice are less well constrained. Across the broad expanse of the Eurasian Arctic, Quaternary stratigraphy is still sparsely documented. The new data from Cape Shpindler fill a spatial gap in paleoenvironmental research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early Aptian Oceanic Anoxic Event (OAE1a, 120 Ma) represents a geologically brief time interval in the mid-Cretaceous greenhouse world that is characterized by increased organic carbon accumulation in marine sediments, sudden biotic changes, and abrupt carbon-isotope excursions indicative of significant perturbations to global carbon cycling. The brevity of these drastic environmental changes (< 10**6 year) and the typically 10**6 year temporal resolution of the available chronologies, however, represent a critical gap in our knowledge of OAE1a. We have conducted a high-resolution investigation of three widely distributed sections, including the Cismon APTICORE in Italy, Santa Rosa Canyon in northeastern Mexico, and Deep Sea Drilling Project (DSDP) Site 398 off the Iberian margin in the North Atlantic Ocean, which represent a range of depositional environments where condensed and moderately expanded OAE1a intervals are recorded. The objectives of this study are to establish orbital chronologies for these sections and to construct a common, high-resolution timescale for OAE1a. Spectral analyses of the closely-spaced (corresponding to ~5 to 10 kyr) measurements of calcium carbonate content of the APTICORE, magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) of the Santa Rosa samples, and MS, ARM and ARM/IRM, where IRM is isothermal remanent magnetization, of Site 398 samples reveal statistically significant cycles. These cycles exhibit periodicity ratios and modulation patterns similar to those of the mid-Cretaceous orbital cycles, suggesting that orbital variations may have modulated depositional processes. Orbital control allows us to estimate the duration of unique, globally identifiable stages of OAE1a. Although OAE1a had a duration of ~1.0 to 1.3 Myr, the initial perturbation represented by the negative carbon-isotope excursion was rapid, lasting for ~27-44 kyr. This estimate could serve as a basis for constraining triggering mechanisms for OAE1a.