952 resultados para orthonormal basis functions (OBF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis propone una completa formulación termo-mecánica para la simulación no-lineal de mecanismos flexibles basada en métodos libres de malla. El enfoque se basa en tres pilares principales: la formulación de Lagrangiano total para medios continuos, la discretización de Bubnov-Galerkin, y las funciones de forma libres de malla. Los métodos sin malla se caracterizan por la definición de un conjunto de funciones de forma en dominios solapados, junto con una malla de integración de las ecuaciones discretas de balance. Dos tipos de funciones de forma se han seleccionado como representación de las familias interpolantes (Funciones de Base Radial) y aproximantes (Mínimos Cuadrados Móviles). Su formulación se ha adaptado haciendo sus parámetros compatibles, y su ausencia de conectividad predefinida se ha aprovechado para interconectar múltiples dominios de manera automática, permitiendo el uso de mallas de fondo no conformes. Se propone una formulación generalizada de restricciones, juntas y contactos, válida para sólidos rígidos y flexibles, siendo estos últimos discretizados mediante elementos finitos (MEF) o libres de malla. La mayor ventaja de este enfoque reside en que independiza completamente el dominio con respecto de las uniones y acciones externas a cada sólido, permitiendo su definición incluso fuera del contorno. Al mismo tiempo, también se minimiza el número de ecuaciones de restricción necesarias para la definición de uniones realistas. Las diversas validaciones, ejemplos y comparaciones detalladas muestran como el enfoque propuesto es genérico y extensible a un gran número de sistemas. En concreto, las comparaciones con el MEF indican una importante reducción del error para igual número de nodos, tanto en simulaciones mecánicas, como térmicas y termo-mecánicas acopladas. A igualdad de error, la eficiencia numérica de los métodos libres de malla es mayor que la del MEF cuanto más grosera es la discretización. Finalmente, la formulación se aplica a un problema de diseño real sobre el mantenimiento de estructuras masivas en el interior de un reactor de fusión, demostrando su viabilidad en análisis de problemas reales, y a su vez mostrando su potencial para su uso en simulación en tiempo real de sistemas no-lineales. A new complete formulation is proposed for the simulation of nonlinear dynamic of multibody systems with thermo-mechanical behaviour. The approach is founded in three main pillars: total Lagrangian formulation, Bubnov-Galerkin discretization, and meshfree shape functions. Meshfree methods are characterized by the definition of a set of shape functions in overlapping domains, and a background grid for integration of the Galerkin discrete equations. Two different types of shape functions have been chosen as representatives of interpolation (Radial Basis Functions), and approximation (Moving Least Squares) families. Their formulation has been adapted to use compatible parameters, and their lack of predefined connectivity is used to interconnect different domains seamlessly, allowing the use of non-conforming meshes. A generalized formulation for constraints, joints, and contacts is proposed, which is valid for rigid and flexible solids, being the later discretized using either finite elements (FEM) or meshfree methods. The greatest advantage of this approach is that makes the domain completely independent of the external links and actions, allowing to even define them outside of the boundary. At the same time, the number of constraint equations needed for defining realistic joints is minimized. Validation, examples, and benchmarks are provided for the proposed formulation, demonstrating that the approach is generic and extensible to further problems. Comparisons with FEM show a much lower error for the same number of nodes, both for mechanical and thermal analyses. The numerical efficiency is also better when coarse discretizations are used. A final demonstration to a real problem for handling massive structures inside of a fusion reactor is presented. It demonstrates that the application of meshfree methods is feasible and can provide an advantage towards the definition of nonlinear real-time simulation models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Morton-Franks-Williams inequality for closures of simple braids (also known as positive permutation braids). This allows to prove, in a simple way, that the set of simple braids is an orthonormal basis for the inner product of the Hecke algebra of the braid group defined by Kálmán, who first obtained this result by using an interesting connection with Contact Topology. We also introduce a new technique to study the Homflypt polynomial for closures of positive braids, namely resolution trees whose leaves are simple braids. In terms of these simple resolution trees, we characterize closed positive braids for which the Morton-Franks-Williams inequality is strict. In particular, we determine explicitly the positive braid words on three strands whose closures have braid index three.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionally-fitted methods are generalizations of collocation techniques to integrate an equation exactly if its solution is a linear combination of a chosen set of basis functions. When these basis functions are chosen as the power functions, we recover classical algebraic collocation methods. This paper shows that functionally-fitted methods can be derived with less restrictive conditions than previously stated in the literature, and that other related results can be derived in a much more elegant way. The novelty in our approach is to fully retain the collocation framework without reverting back into derivations based on cumbersome Taylor series expansions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview of neural networks, covering multilayer perceptrons, radial basis functions, constructive algorithms, Kohonen and K-means unupervised algorithms, RAMnets, first and second order training methods, and Bayesian regularisation methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thrust of this report concerns spline theory and some of the background to spline theory and follows the development in (Wahba, 1991). We also review methods for determining hyper-parameters, such as the smoothing parameter, by Generalised Cross Validation. Splines have an advantage over Gaussian Process based procedures in that we can readily impose atmospherically sensible smoothness constraints and maintain computational efficiency. Vector splines enable us to penalise gradients of vorticity and divergence in wind fields. Two similar techniques are summarised and improvements based on robust error functions and restricted numbers of basis functions given. A final, brief discussion of the application of vector splines to the problem of scatterometer data assimilation highlights the problems of ambiguous solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a study of three techniques to improve performance of some standard fore-casting models, application to the energy demand and prices. We focus on forecasting demand and price one-day ahead. First, the wavelet transform was used as a pre-processing procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have empirically compared these approaches and found that the former consistently outperformed the latter. Second, adaptive models were introduced to continuously update model parameters in the testing period by combining ?lters with standard forecasting methods. Among these adaptive models, the adaptive LR-GARCH model was proposed for the fi?rst time in the thesis. Third, with regard to noise distributions of the dependent variables in the forecasting models, we used either Gaussian or Student-t distributions. This thesis proposed a novel algorithm to infer parameters of Student-t noise models. The method is an extension of earlier work for models that are linear in parameters to the non-linear multilayer perceptron. Therefore, the proposed method broadens the range of models that can use a Student-t noise distribution. Because these techniques cannot stand alone, they must be combined with prediction models to improve their performance. We combined these techniques with some standard forecasting models: multilayer perceptron, radial basis functions, linear regression, and linear regression with GARCH. These techniques and forecasting models were applied to two datasets from the UK energy markets: daily electricity demand (which is stationary) and gas forward prices (non-stationary). The results showed that these techniques provided good improvement to prediction performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subject of this thesis is the n-tuple net.work (RAMnet). The major advantage of RAMnets is their speed and the simplicity with which they can be implemented in parallel hardware. On the other hand, this method is not a universal approximator and the training procedure does not involve the minimisation of a cost function. Hence RAMnets are potentially sub-optimal. It is important to understand the source of this sub-optimality and to develop the analytical tools that allow us to quantify the generalisation cost of using this model for any given data. We view RAMnets as classifiers and function approximators and try to determine how critical their lack of' universality and optimality is. In order to understand better the inherent. restrictions of the model, we review RAMnets showing their relationship to a number of well established general models such as: Associative Memories, Kamerva's Sparse Distributed Memory, Radial Basis Functions, General Regression Networks and Bayesian Classifiers. We then benchmark binary RAMnet. model against 23 other algorithms using real-world data from the StatLog Project. This large scale experimental study indicates that RAMnets are often capable of delivering results which are competitive with those obtained by more sophisticated, computationally expensive rnodels. The Frequency Weighted version is also benchmarked and shown to perform worse than the binary RAMnet for large values of the tuple size n. We demonstrate that the main issues in the Frequency Weighted RAMnets is adequate probability estimation and propose Good-Turing estimates in place of the more commonly used :Maximum Likelihood estimates. Having established the viability of the method numerically, we focus on providillg an analytical framework that allows us to quantify the generalisation cost of RAMnets for a given datasetL. For the classification network we provide a semi-quantitative argument which is based on the notion of Tuple distance. It gives a good indication of whether the network will fail for the given data. A rigorous Bayesian framework with Gaussian process prior assumptions is given for the regression n-tuple net. We show how to calculate the generalisation cost of this net and verify the results numerically for one dimensional noisy interpolation problems. We conclude that the n-tuple method of classification based on memorisation of random features can be a powerful alternative to slower cost driven models. The speed of the method is at the expense of its optimality. RAMnets will fail for certain datasets but the cases when they do so are relatively easy to determine with the analytical tools we provide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend our previous work into error-free representations of transform basis functions by presenting a novel error-free encoding scheme for the fast implementation of a Linzer-Feig Fast Cosine Transform (FCT) and its inverse. We discuss an 8x8 L-F scaled Discrete Cosine Transform where the architecture uses a new algebraic integer quantization of the 1-D radix-8 DCT that allows the separable computation of a 2-D DCT without any intermediate number representation conversions. The resulting architecture is very regular and reduces latency by 50% compared to a previous error-free design, with virtually the same hardware cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many organic compounds cause an irreversible damage to human health and the ecosystem and are present in water resources. Among these hazard substances, phenolic compounds play an important role on the actual contamination. Utilization of membrane technology is increasing exponentially in drinking water production and waste water treatment. The removal of organic compounds by nanofiltration membranes is characterized not only by molecular sieving effects but also by membrane-solute interactions. Influence of the sieving parameters (molecular weight and molecular diameter) and the physicochemical interactions (dissociation constant and molecular hydrophobicity) on the membrane rejection of the organic solutes were studied. The molecular hydrophobicity is expressed as logarithm of octanol-water partition coefficient. This paper proposes a method used that can be used for symbolic knowledge extraction from a trained neural network, once they have been trained with the desired performance and is based on detect the more important variables in problems where exist multicolineality among the input variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this research are to analyze and develop a modified Principal Component Analysis (PCA) and to develop a two-dimensional PCA with applications in image processing. PCA is a classical multivariate technique where its mathematical treatment is purely based on the eigensystem of positive-definite symmetric matrices. Its main function is to statistically transform a set of correlated variables to a new set of uncorrelated variables over $\IR\sp{n}$ by retaining most of the variations present in the original variables.^ The variances of the Principal Components (PCs) obtained from the modified PCA form a correlation matrix of the original variables. The decomposition of this correlation matrix into a diagonal matrix produces a set of orthonormal basis that can be used to linearly transform the given PCs. It is this linear transformation that reproduces the original variables. The two-dimensional PCA can be devised as a two successive of one-dimensional PCA. It can be shown that, for an $m\times n$ matrix, the PCs obtained from the two-dimensional PCA are the singular values of that matrix.^ In this research, several applications for image analysis based on PCA are developed, i.e., edge detection, feature extraction, and multi-resolution PCA decomposition and reconstruction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital Image Processing is a rapidly evolving eld with growing applications in Science and Engineering. It involves changing the nature of an image in order to either improve its pictorial information for human interpretation or render it more suitable for autonomous machine perception. One of the major areas of image processing for human vision applications is image enhancement. The principal goal of image enhancement is to improve visual quality of an image, typically by taking advantage of the response of human visual system. Image enhancement methods are carried out usually in the pixel domain. Transform domain methods can often provide another way to interpret and understand image contents. A suitable transform, thus selected, should have less computational complexity. Sequency ordered arrangement of unique MRT (Mapped Real Transform) coe cients can give rise to an integer-to-integer transform, named Sequency based unique MRT (SMRT), suitable for image processing applications. The development of the SMRT from UMRT (Unique MRT), forward & inverse SMRT algorithms and the basis functions are introduced. A few properties of the SMRT are explored and its scope in lossless text compression is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximum numbers of distinct one- and two-electron integrals that arise in calculating the electronic energy of a molecule are discussed. It is shown that these may be calculated easily using the character table of the symmetry group of the set of basis functions used to express the wave function. Complications arising from complex group representations and from a conflict of symmetry between the basis set and the nuclear configuration are considered and illustrated by examples.