984 resultados para order-flow
Resumo:
KIVA is a FORTRAN code developed by Los Alamos national lab to simulate complete engine cycle. KIVA is a flow solver code which is used to perform calculation of properties in a fluid flow field. It involves using various numerical schemes and methods to solve the Navier-Stokes equation. This project involves improving the accuracy of one such scheme by upgrading it to a higher order scheme. The numerical scheme to be modified is used in the critical final stage calculation called as rezoning phase. The primitive objective of this project is to implement a higher order numerical scheme, to validate and verify that the new scheme is better than the existing scheme. The latest version of the KIVA family (KIVA 4) is used for implementing the higher order scheme to support handling the unstructured mesh. The code is validated using the traditional shock tube problem and the results are verified to be more accurate than the existing schemes in reference with the analytical result. The convection test is performed to compare the computational accuracy on convective transfer; it is found that the new scheme has less numerical diffusion compared to the existing schemes. A four valve pentroof engine, an example case of KIVA package is used as application to ensure the stability of the scheme in practical application. The results are compared for the temperature profile. In spite of all the positive results, the numerical scheme implemented has a downside of consuming more CPU time for the computational analysis. The detailed comparison is provided. However, in an overview, the implementation of the higher order scheme in the latest code KIVA 4 is verified to be successful and it gives better results than the existing scheme which satisfies the objective of this project.
Resumo:
Lymphedema is a disease characterized by swelling resulting from the accumulation of fluid in the extracellular matrix (ECM) of the skin. In order to alleviate this swelling, the authors sought to selectively degrade certain hydrophilic molecules in the ECM called glycosaminoglycans (GAGs). GAGs are long unbranched sugar molecules present in the ECM that attract water to their numerous negative charges. The authors hypothesized that the density of GAGs would increase in lymphedema and inhibit fluid from leaving the tissue. An existing mouse tail model of experimental lymphedema that reproduced important features of the human condition was used to evaluate GAG content in swollen tissue. In this model, a surgical excision of tissue was made circumferentially around the tail that caused swelling distal to the wound site. Tissue distal to the wound site was analyzed via two assays; one that measured hyaluronan (an unsulfated GAG) and another that measured sulfated GAGs (including Dermatan Sulfate and Chondroitin Sulfate), at various timepoints post surgical intervention. Hyaluronan (HA) levels were significantly higher than control (tissues with no surgical intervention) by day 5 (p
Resumo:
There is a steadily increasing pressure on cost-savings and productivity growth in sectors of order-picking such that the wish for rationalization by automation is rising. Special problems are faced trying to automatize handling operations of order-picking articles packed in bags. The mechanical properties of the objects and their hard-to-predict shape and position represent obstacles and are complicating handling operations. A systematic approach in system design is required. This article deals with the properties of such products under aspects of difficulties arising in automated handling and points out a useful system development methodology.
Resumo:
This article deals with complex material flow systems and series connections of conveyor and op-erating elements. These can be characterised by a specific availability. The thus resultant overall availabil-ity of necessary “technical throughput” of the individual elements for the achievement of a specified throughput. When the conveyor and operating elements are subjected to a stochastic distribution, the interposition of buffers is necessary but these can also lead to a reduction of the necessary throughput due faults. The system behaviour of complex installations can only be investigated by simulation. The parame-ter changes required in order to achieve specific target values can also be determined by simulation runs in iteration loops.
Resumo:
We have integrated the basic psychological needs approach from self-determination theory with motive disposition theory in order to enhance the prediction of flow experience in sports. We hypothesize that an environment that enables people to fulfill their basic psychological needs for competence and social relatedness results in flow. Additionally, we assume that the effect of competence need satisfaction is moderated by the achievement motive and that the effect of need-for-relatedness satisfaction is moderated by the affiliation motive. Four studies show the expected positive effects of need satisfaction on flow and further confirm that high achievement and affiliation-motivated individuals benefit more from competence and relatedness sports environments, respectively, than individuals low in these motives.
Resumo:
Flow represents an optimal psychological state that is intrinsically rewarding. However, to date only a few studies have investigated the conditions for flow in sports. The present research aims to expand our understanding of the psychological factors that promote the flow experience in sports, focusing on the person-goal fit, or more precisely on the athletes’ situational and dispositional goal orientations. We hypothesize that a fit between an athlete’s situational and dispositional approach versus avoidance goal orientation should promote flow, whereas a non-fit will hinder flow during sports. In addition to the flow experience, we hypothesize that an athlete’s affective well-being is also affected by the person-goal fit. Here our assumptions are theoretically rooted in research on person-environment fit. An experimental study in an ecologically valid sport setting was conducted in order to draw causal conclusions and derive useful strategies for the practice of sports. Specifically, we investigated 67 male soccer players from a regional amateur league during a regular training session. They were randomly assigned to an approach or avoidance goal group and asked to take five penalty shots. Immediately afterwards, their flow experience and affective well-being during the penalty shootout were measured. As predicted, soccer players with a strong dispositional approach goal orientation experienced more flow and reported higher affective well-being when they were assigned to the approach goal. In contrast, soccer players with a strong dispositional avoidance goal orientation benefited from being assigned an avoidance goal in terms of their flow experience and affective well-being. The results are discussed critically with respect to their theoretical and practical implications.
Resumo:
1 Natural soil profiles may be interpreted as an arrangement of parts which are characterized by properties like hydraulic conductivity and water retention function. These parts form a complicated structure. Characterizing the soil structure is fundamental in subsurface hydrology because it has a crucial influence on flow and transport and defines the patterns of many ecological processes. We applied an image analysis method for recognition and classification of visual soil attributes in order to model flow and transport through a man-made soil profile. Modeled and measured saturation-dependent effective parameters were compared. We found that characterizing and describing conductivity patterns in soils with sharp conductivity contrasts is feasible. Differently, solving flow and transport on the basis of these conductivity maps is difficult and, in general, requires special care for representation of small-scale processes.
Resumo:
The hippocampus receives input from upper levels of the association cortex and is implicated in many mnemonic processes, but the exact mechanisms by which it codes and stores information is an unresolved topic. This work examines the flow of information through the hippocampal formation while attempting to determine the computations that each of the hippocampal subfields performs in learning and memory. The formation, storage, and recall of hippocampal-dependent memories theoretically utilize an autoassociative attractor network that functions by implementing two competitive, yet complementary, processes. Pattern separation, hypothesized to occur in the dentate gyrus (DG), refers to the ability to decrease the similarity among incoming information by producing output patterns that overlap less than the inputs. In contrast, pattern completion, hypothesized to occur in the CA3 region, refers to the ability to reproduce a previously stored output pattern from a partial or degraded input pattern. Prior to addressing the functional role of the DG and CA3 subfields, the spatial firing properties of neurons in the dentate gyrus were examined. The principal cell of the dentate gyrus, the granule cell, has spatially selective place fields; however, the behavioral correlates of another excitatory cell, the mossy cell of the dentate polymorphic layer, are unknown. This report shows that putative mossy cells have spatially selective firing that consists of multiple fields similar to previously reported properties of granule cells. Other cells recorded from the DG had single place fields. Compared to cells with multiple fields, cells with single fields fired at a lower rate during sleep, were less likely to burst, and were more likely to be recorded simultaneously with a large population of neurons that were active during sleep and silent during behavior. These data suggest that single-field and multiple-field cells constitute at least two distinct cell classes in the DG. Based on these characteristics, we propose that putative mossy cells tend to fire in multiple, distinct locations in an environment, whereas putative granule cells tend to fire in single locations, similar to place fields of the CA1 and CA3 regions. Experimental evidence supporting the theories of pattern separation and pattern completion comes from both behavioral and electrophysiological tests. These studies specifically focused on the function of each subregion and made implicit assumptions about how environmental manipulations changed the representations encoded by the hippocampal inputs. However, the cell populations that provided these inputs were in most cases not directly examined. We conducted a series of studies to investigate the neural activity in the entorhinal cortex, dentate gyrus, and CA3 in the same experimental conditions, which allowed a direct comparison between the input and output representations. The results show that the dentate gyrus representation changes between the familiar and cue altered environments more than its input representations, whereas the CA3 representation changes less than its input representations. These findings are consistent with longstanding computational models proposing that (1) CA3 is an associative memory system performing pattern completion in order to recall previous memories from partial inputs, and (2) the dentate gyrus performs pattern separation to help store different memories in ways that reduce interference when the memories are subsequently recalled.
Resumo:
Ore-forming and geoenviromental systems commonly involve coupled fluid flowand chemical reaction processes. The advanced numerical methods and computational modeling have become indispensable tools for simulating such processes in recent years. This enables many hitherto unsolvable geoscience problems to be addressed using numerical methods and computational modeling approaches. For example, computational modeling has been successfully used to solve ore-forming and mine site contamination/remediation problems, in which fluid flow and geochemical processes play important roles in the controlling dynamic mechanisms. The main purpose of this paper is to present a generalized overview of: (1) the various classes and models associated with fluid flow/chemically reacting systems in order to highlight possible opportunities and developments for the future; (2) some more general issues that need attention in the development of computational models and codes for simulating ore-forming and geoenviromental systems; (3) the related progresses achieved on the geochemical modeling over the past 50 years or so; (4) the general methodology for modeling of oreforming and geoenvironmental systems; and (5) the future development directions associated with modeling of ore-forming and geoenviromental systems.
Resumo:
Low-flow, low-gradient severe aortic stenosis (AS) is characterised by a small aortic valve area (AVA) and low mean gradient (MG) secondary to a low cardiac output and may occur in patients with either a preserved or reduced left ventricular ejection fraction (LVEF). Symptomatic patients presenting with low-flow, low-gradient severe AS have a dismal prognosis independent of baseline LVEF if managed conservatively and should therefore undergo aortic valve replacement if feasible. Transthoracic echocardiography (TTE) is the first-line investigation for the assessment of AS haemodynamic severity. However, when confronted with guideline-discordant AVA (small) and MG (low) values, there are several reasons other than severe AS combined with a low cardiac output which may lead to such a situation, including erroneous measurements, small body size, inherent inconsistencies in the guidelines' criteria, prolonged ejection time and aortic pseudostenosis. The distinction between these various entities poses a diagnostic challenge. However, it is important to make a distinction because each has very different implications in terms of risk stratification and therapeutic management. In such instances, cardiac catheterisation forms an integral part of the work-up of these patients in order to confirm or refute the echocardiographic findings to guide management decisions appropriately.
Resumo:
Endovascular aortic repair (EVAR) necessitates lifelong surveillance for the patient, in order to detect complications timely. Endoleaks (ELs) are among the most common complications of EVAR. Especially type II ELs can have a very unpredictable clinical course and this can range from spontaneous sealing to aortic rupture. Subgroups of this type of EL need to be identified in order to make a proper risk stratification. Aim of this review is to describe the existing imaging techniques, including their advantages and disadvantages in the context of post-EVAR surveillance with a particular emphasis on low-flow ELs. Low flow ELs cause pressurization of the aortic aneurysm sac with a low velocity filling, leading to difficulty of detection by routine imaging protocols for EVAR surveillance, e.g. bi- or triphasic multislice computed tomographic angiography, magnetic resonance imaging and contrast enhanced ultrasound. In this article, we review the imaging possibilities of ELs and discuss the different imaging strategies available for depicting low flow ELs.
Resumo:
We describe a method for rapid identification and precise quantification of slope deformation using a portable radar interferometer. A rockslide with creep-like behavior was identified in the rugged and inaccessible headwaters of the Illgraben debris-flow catchment, located in the Central Swiss Alps. The estimated volume of the moving rock mass was approximately 0.5 x 10(6) m(3) with a maximum daily (3-D) displacement rate of 3 mm. Fast scene acquisition in the order of 6 s/scene led to uniquely precise mapping of spatial and temporal variability of atmospheric phase delay. Observations led to a simple qualitative model for prediction of atmospheric disturbances using a simple model for solar radiation, which can be used for advanced campaign planning for short observation periods (hours to days).
Resumo:
ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √sNN = 2.76 TeV are shown using a dataset of approximately 7μb−1 collected at the LHC in 2010. The measurements are performed for charged particles with transversemomenta 0.5 < pT < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, vn, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the vn coefficients are presented. The elliptic flow, v2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v3 and v4, are determined with two- and four-particle cumulants. Flow harmonics vn measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multiparticle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.
Resumo:
The integrated elliptic flow of charged particles produced in Pb+Pb collisions at √sNN = 2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v2, was measured in the pseudorapidity range |η| ≤ 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v2 integrated over pT, a 1 μb−1 data sample recorded without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v2 is compared to other measurements obtained with higher pT thresholds. The integrated elliptic flow is weakly decreasing with |η|. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.
Resumo:
PURPOSE The aim of this present study was to evaluate the sonographic correlation between Doppler flow characteristics of the uterine arteries and tumor size in patients with cervical cancer, in order to establish a new potential marker to monitor treatment response. METHODS This was a retrospective cohort study of 25 patients who underwent a sonographic evaluation of Doppler flow characteristics of the uterine arteries before surgery or radiochemotherapy for early and locally advanced/advanced cervical cancer, respectively, was analyzed. The primary outcome was the correlation between Doppler flow characteristics of the uterine arteries and tumor size in patients with cervical cancer. RESULTS Median age was 49 (range 26-85) years, and mean tumor size was 40.8 ± 17 mm. A significant positive correlation was found between tumor diameter and the uterine artery end-diastolic velocity (r = 0.47, p < 0.05) as well as the peak systolic velocity (r = 0.41, p < 0.05). No correlation was found between tumor size and the pulsatility index or resistance index. CONCLUSIONS In cervical cancer, uterine artery velocity parameters are associated with tumor size. This finding could become particularly useful in the follow-up of locally advanced cervical cancer patients undergoing radiochemotherapy or in corroborating the selection of women with more possibility of a high response rate during neoadjuvant chemotherapy before surgery.