988 resultados para object classification
Resumo:
There is limited understanding about business strategies related to parliamentary government's departments. This study focuses on the strategies of departments of two state governments in Australia. The strategies are derived from department strategic plans available in public domain and collected from respective websites. The results of this research indicate that strategies fall into seven categories: internal, development, political, partnership, environment, reorientation and status quo. The strategies of the departments are mainly internal or development where development strategy is mainly the focus of departments such as transport, and infrastructure. Political strategy is prevalent for departments related to communities, and education and training. Further three layers of strategies are identified as kernel, cluster and individual, which are mapped to the developed taxonomy.
Resumo:
Load in distribution networks is normally measured at the 11kV supply points; little or no information is known about the type of customers and their contributions to the load. This paper proposes statistical methods to decompose an unknown distribution feeder load to its customer load sector/subsector profiles. The approach used in this paper should assist electricity suppliers in economic load management, strategic planning and future network reinforcements.
Resumo:
The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.
Resumo:
This article outlines the key recommendations of the Australian Law Reform Commission’s review of the National Classification Scheme, as outlined in its report Classification – Content Regulation and Convergent Media (ALRC, 2012). It identifies key contextual factors that underpin the need for reform of media classification laws and policies, including the fragmentation of regulatory responsibilities and the convergence of media platforms, content and services, as well as discussing the ALRC’s approach to law reform.
Resumo:
With the increasing number of stratospheric particles available for study (via the U2 and/or WB57F collections), it is essential that a simple, yet rational, classification scheme be developed for general use. Such a scheme should be applicable to all particles collected from the stratosphere, rather than limited to only extraterrestial or chemical sub-groups. Criteria for the efficacy of such a scheme would include: (a) objectivity , (b) ease of use, (c) acceptance within the broader scientific community and (d) how well the classification provides intrinsic categories which are consistent with our knowledge of particle types present in the stratosphere.
Resumo:
Several investigators have recently proposed classification schemes for stratospheric dust particles [1-3]. In addition, extraterrestrial materials within stratospheric dust collections may be used as a measure of micrometeorite flux [4]. However, little attention has been given to the problems of the stratospheric collection as a whole. Some of these problems include: (a) determination of accurate particle abundances at a given point in time; (b) the extent of bias in the particle selection process; (c) the variation of particle shape and chemistry with size; (d) the efficacy of proposed classification schemes and (e) an accurate determination of physical parameters associated with the particle collection process (e.g. minimum particle size collected, collection efficiency, variation of particle density with time). We present here preliminary results from SEM, EDS and, where appropriate, XRD analysis of all of the particles from a collection surface which sampled the stratosphere between 18 and 20km in altitude. Determinations of particle densities from this study may then be used to refine models of the behavior of particles in the stratosphere [5].
Resumo:
The use of Trusted Platform Module (TPM) is be- coming increasingly popular in many security sys- tems. To access objects protected by TPM (such as cryptographic keys), several cryptographic proto- cols, such as the Object Specific Authorization Pro- tocol (OSAP), can be used. Given the sensitivity and the importance of those objects protected by TPM, the security of this protocol is vital. Formal meth- ods allow a precise and complete analysis of crypto- graphic protocols such that their security properties can be asserted with high assurance. Unfortunately, formal verification of these protocols are limited, de- spite the abundance of formal tools that one can use. In this paper, we demonstrate the use of Coloured Petri Nets (CPN) - a type of formal technique, to formally model the OSAP. Using this model, we then verify the authentication property of this protocol us- ing the state space analysis technique. The results of analysis demonstrates that as reported by Chen and Ryan the authentication property of OSAP can be violated.
Resumo:
A review of 291 catalogued particles on the bases of particle size, shape, bulk chemistry, and texture is used to establish a reliable taxonomy. Extraterrestrial materials occur in three defined categories: spheres, aggregates and fragments. Approximately 76% of aggregates are of probable extraterrestrial origin, whereas spheres contain the smallest amount of extraterrestrial material (approx 43%). -B.M.
Resumo:
This paper is concerned with the unsupervised learning of object representations by fusing visual and motor information. The problem is posed for a mobile robot that develops its representations as it incrementally gathers data. The scenario is problematic as the robot only has limited information at each time step with which it must generate and update its representations. Object representations are refined as multiple instances of sensory data are presented; however, it is uncertain whether two data instances are synonymous with the same object. This process can easily diverge from stability. The premise of the presented work is that a robot's motor information instigates successful generation of visual representations. An understanding of self-motion enables a prediction to be made before performing an action, resulting in a stronger belief of data association. The system is implemented as a data-driven partially observable semi-Markov decision process. Object representations are formed as the process's hidden states and are coordinated with motor commands through state transitions. Experiments show the prediction process is essential in enabling the unsupervised learning method to converge to a solution - improving precision and recall over using sensory data alone.
Resumo:
This item provides supplementary materials for the paper mentioned in the title, specifically a range of organisms used in the study. The full abstract for the main paper is as follows: Next Generation Sequencing (NGS) technologies have revolutionised molecular biology, allowing clinical sequencing to become a matter of routine. NGS data sets consist of short sequence reads obtained from the machine, given context and meaning through downstream assembly and annotation. For these techniques to operate successfully, the collected reads must be consistent with the assumed species or species group, and not corrupted in some way. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans,with some strains exhibiting antibiotic resistance. In this paper, we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from alternative pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.