863 resultados para nutrient mobility
Resumo:
In this paper we study the commuting and moving decisions of workers in Catalonia (Spain) and its evolution in the 1986-1996 period. Using a microdata sample from the 1991 Spanish Population Census, we estimate a simultaneous, discrete choice model of commuting and moves, thus indirectly addressing the home and job location decisions. The econometrical framework is a simultaneous, binary probit model with a commute equation and a move equation
Resumo:
The most advanced stage of water erosion, the gully, represents severe problems in different contexts, both in rural and urban environments. In the search for a stabilization of the process in a viable manner it is of utmost importance to assess the efficiency of evaluation methodologies. For this purpose, the efficiency of low-cost conservation practices were tested for the reduction of soil and nutrient losses caused by erosion from gullies in Pinheiral, state of Rio de Janeiro. The following areas were studied: gully recovered by means of physical and biological strategies; gullies in recovering stage, by means of physical strategies only, and gullies under no restoration treatment. During the summer of 2005/2006, the following data sets were collected for this study: soil classification of each of the eroded gully areas; planimetric and altimetric survey; determination of rain erosivity indexes; determination of amount of soil sediment; sediment grain size characteristics; natural amounts of nutrients Ca, Mg, K and P, as well as total C and N concentrations. The results for the three first measurements were 52.5, 20.5, and 29.0 Mg in the sediments from the gully without intervention, and of 1.0, 1.7 and 1.8 Mg from the gully with physical interventions, indicating an average reduction of 95 %. The fully recovered gully produced no sediment during the period. The data of total nutrient loss from the three gullies under investigation showed reductions of 98 % for the recovering gully, and 99 % for the fully recovered one. As for the loss of nutrients, the data indicate a nutrient loss of 1,811 kg from for the non-treated gully. The use of physical and biological interventions made it possible to reduce overall nutrient loss by more than 96 %, over the entire rainy season, as compared to the non-treated gully. Results show that the methods used were effective in reducing soil and nutrient losses from gullies.
Resumo:
The rate of energy expenditure was repeatedly measured by indirect calorimetry both in the basal state (BMR) and in the resting fed state (RMR) in 8 middle-aged male patients operated for oropharyngeal cancer. In the postsurgical phase, two sequential energy levels were administered by nasogastric tube: (1) a 'maintenance' level (days 3-5) at 1.4 X measured presurgery BMR; (2) a 'supramaintenance' level (days 6-9) at 1.7 X measured BMR on day 6. Before surgery the patients had a BMR averaging (23.7 +/- 1.0 kcal/kg.day). After surgery BMR increased to 27.6 +/- 2.7 kcal/kg.day (day 6), then it decreased to 24.4 +/- 1.4 kcal/kg.day (day 10). The difference between RMR and BMR yielded a nutrient-induced thermogenesis averaging 5 +/- 1 and 8.5 +/- 2% (p less than 0.05) on levels 1 and 2, respectively. It is concluded that an energy level corresponding to 1.4 X presurgery BMR is sufficient to maintain energy and substrate equilibrium in nondepleted patients, whereas 1.7 X BMR induces positive protein and fat balances concomitant to a decrease efficiency of energy utilization.
Resumo:
The eutrophication of aquifers is strongly linked to the mobility of P in soils. Although P mobility was considered irrelevant in a more distant past, more recent studies have shown that P, both in organic (Po) and inorganic forms (Pi), can be lost by leaching and eluviation through the soil profile, particularly in less weathered and/or sandier soils with low P adsorption capacity. The purpose of this study was to determine losses of P forms by leaching and eluviation from soil columns. Each column consisted of five PVC rings (diameter 5 cm, height 10 cm), filled with two soil types: a clayey Red-Yellow Latosol and a sandy loam Red-Yellow Latosol, which were exposed to water percolation. The soils were previously treated with four P rates (as KH2PO4 ) to reach 0, 12.5, 25.0 and 50 % of the maximum P adsorption capacity (MPAC). The P source was homogenized with the whole soil volume and incubated for 60 days. After this period the soils were placed in the columns; the soil of the top ring was mixed with five poultry litter rates of 0, 20, 40, 80, and 160 t ha-1 (dry weight basis). Treatments consisted of a 4 x 5 x 2 factorial scheme corresponding to four MPAC levels, five poultry litter rates, two soils, with three replications, arranged in a completely randomized block design. Deionized water was percolated through the columns 10 times in 35 days to simulate about 1,200 mm rainfall. In the leachate of each column the inorganic P (reactive P, Pi) and organic P forms (unreactive P, Po) were determined. At the end of the experiment, the columns were disassembled and P was extracted with the extractants Mehlich-1 (HCl 0.05 mol L-1 and H2SO4 0.0125 mol L-1) and Olsen (NaHCO3 0.5 mol L-1; pH 8.5) from the soil of each ring. The Pi and Po fractions were measured by the Olsen extractant. It was found that under higher poultry litter rates the losses of unreactive P (Po) were 6.4 times higher than of reactive P (Pi). Both the previous P fertilization and increasing poultry litter rates caused a vertical movement of P down the soil columns, as verified by P concentrations extracted by Mehlich-1 and NaHCO3 (Olsen). The environmental critical level (ECL), i.e., the P soil concentration above which P leaching increases exponentially, was 100 and 150 mg dm-3 by Mehlich-1 and 40 and 60 mg dm-3 by Olsen, for the sandy loam and clay soils, respectively. In highly weathered soils, where residual P is accumulated by successive crops, P leaching through the profile can be significant, particularly when poultry litter is applied as fertilizer.
Resumo:
Summary
Resumo:
Although silicon is not recognized as a nutrient, it may benefit rice plants and may alleviate the Mn toxicity in some plant species. The dry matter yield (root, leaf, sheaths and leaf blade) and plant architecture (angle of leaf insertion and leaf arc) were evaluated in rice plants grown in nutrient solutions with three Mn doses, with and without Si addition. The treatments were arranged in a 2 x 3 factorial [with and without (2 mmol L-1) Si; three Mn doses (0.5; 2.5 and 10 µmol L-1)], in a randomized block design with 4 replications. The experimental unit was a 4 L plastic vase with 4 rice (Metica-1 cultivar) plants. Thirty nine days after keeping the seedlings in the nutrient solution the plant dry matter yield was determined; the angle of leaf insertion in the sheath and the leaf arc were measured; and the Si and Mn concentrations in roots, sheaths and leaves were determined. The analysis of variance (F test at 5 and 1 % levels) and the regression analysis (for testing plant response to Mn with the Si treatments) were performed. The Si added to the nutrient solution increased the dry matter yield of roots, sheaths and leaf blades and also decreased the angle of leaf blade insertion into the sheath and the foliar arc in the rice plant. Additionally, it ameliorated the rice plant architecture which allowed an increase in the dry matter yield. Similarly, the addition of Mn to the solution improved the architecture of the rice plants with gain in dry matter yield. As Si was added to the nutrient solution, the concentration of Mn in leaves decreased and in roots increased thus alleviating the toxic effects of Mn on the plants.
Resumo:
Tillage affects soil physical properties, e.g., porosity, and leads to different amounts of mulch on the soil surface. Consequently, tillage is related to the soil temperature and moisture regime. Soil cover, temperature and moisture were measured under corn (Zea mays) in the tenth year of five tillage systems (NT = no-tillage; CP = chisel plow and single secondary disking; CT = primary and double secondary disking; CTb = CT with crop residues burned; and CTr = CT with crop residues removed). The tillage systems were combined with five nutrient sources (C = control; MF = mineral fertilizer; PL = poultry litter; CS = cattle slurry; and SS = swine slurry). Soil cover after sowing was greatest in NT (88 %), medium in CP (38 %) and lowest in CT treatments (< 10 %), but differences decreased after corn emergence. Soil temperature was related with soil cover, and significant differences among tillage were observed at the beginning of the growing season and at corn maturity. Differences in soil temperature and moisture in the surface layer of the tilled treatments were greater during the corn cycle than in untilled treatments, due to differences in intensity of soil mobilization and mulch remaining after soil management. Nutrient sources affected soil temperature and moisture in the most intense part of the corn growth period, and were related to the variation of the corn leaf area index among treatments
Resumo:
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.
Resumo:
Adequate nutrient levels in plants vary according to the species or clone, age and management practice. Therefore, adjustments of the nutrient solution are often necessary according to the plant material for multiplication. This study aimed to evaluate the influence of NPK fertilization on production and leaf nutrient contents of eucalyptus cuttings in nutrient solution. The study was conducted from November 2008 to January 2009 in a greenhouse. The experimental design was completely randomized fractional factorial (4 x 4 x 4)½, with a total of 32 treatments with three replications. The treatments consisted of four doses of N (50, 100, 200 and 400 mg L-1) as urea, P (7.5, 15, 30 and 60 mg L-1) in the form of phosphoric acid and K (50, 100, 200 and 400 mg L-1) in the form of potassium chloride in the nutrient solution. Only the effect of N alone was significant for the number and dry weight of minicuttings per ministump, with a linear decreasing effect with increasing N levels. The highest number of cuttings was obtained at a dose of 50, 7.5 and 50 mg L-1 of N, P and K, respectively.
Resumo:
To synchronize nutrient availability with the requirements of eucalyptus during a cultivation cycle, the nutrient flow of this system must be well understood. Essential, for example, is information about nutrient dynamics in eucalyptus plantations throughout a cultivation cycle, as well as impacts on soil nutrient reserves caused by the accumulation and subsequent export of nutrients via biomass. It is also important to quantify the effect of some management practices, such as tree population density (PD) on these fluxes. Some nutrient relations in an experiment with Eucalyptus grandis, grown at different PDs in Santa Barbara, state of Minas Gerais, Brazil, were evaluated for one cultivation cycle. At forest ages of 0.25, 2.5, 4.5, and 6.75 years, evaluations were carried out in the stands at seven different PDs (between 500 and 5,000 trees ha-1) which consisted in chemical analyses of plant tissue sampled from components of the aboveground parts of the tree, from the forest floor and the litterfall. Nutrient contents and allocations of the different biomass components were estimated. In general, there were only small and statistically insignificant effects of PD on the nutrient concentration in trees. With increasing forest age, P, K, Ca and Mg concentrations were reduced in the aboveground components and the forest floor. The magnitud of biochemical nutrient cycling followed the sequence: P > K > N > Mg. At the end of the cycle, the quantities of N, P, Ca and Mg immobilized in the forest floor were higher than in the other components.
Resumo:
Summary
Resumo:
Highway agencies spend millions of dollars to ensure safe and efficient winter travel. However, the effectiveness of winter weather maintenance practices on safety and mobility are somewhat difficult to quantify. Phase I of this project investigated opportunities for improving traffic safety on state-maintained roads in Iowa during winter weather conditions. The primary objective was to develop several preliminary means for the Iowa Department of Transportation (DOT) to identify locations of possible interest systematically with respect to winter weather-related safety performance based on crash history. Specifically, metrics were developed to assist in identifying possible habitual, winter weather-related crash sites on state-maintained rural highways in Iowa. In addition, the current state of practice, for both domestic and international highway agency practices, regarding integration of traffic safety- and mobility-related data in winter maintenance activities and performance measures were investigated. This investigation also included previous research efforts. Finally, a preliminary work plan, focusing on systematic use of safety-related data in support of winter maintenance activities and site evaluation, was prepared.
Resumo:
Summary
Resumo:
A previous study sponsored by the Smart Work Zone Deployment Initiative, “Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility,” demonstrated the feasibility of combining readily available, inexpensive software programs, such as SketchUp and Google Earth, with standard two-dimensional civil engineering design programs, such as MicroStation, to create animations of construction work zones. The animations reflect changes in work zone configurations as the project progresses, representing an opportunity to visually present complex information to drivers, construction workers, agency personnel, and the general public. The purpose of this study is to continue the work from the previous study to determine the added value and resource demands created by including more complex data, specifically traffic volume, movement, and vehicle type. This report describes the changes that were made to the simulation, including incorporating additional data and converting the simulation from a desktop application to a web application.