963 resultados para numerical integration methods
Resumo:
Ground-penetrating radar (GPR) and microgravimetric surveys have been conducted in the southern Jura mountains of western Switzerland in order to map subsurface karstic features. The study site, La Grande Rolaz cave, is an extensive system in which many portions have been mapped. By using small station spacing and careful processing for the geophysical data, and by modeling these data with topographic information from within the cave, accurate interpretations have been achieved. The constraints on the interpreted geologic models are better when combining the geophysical methods than when using only one of the methods, despite the general limitations of two-dimensional (2D) profiling. For example, microgravimetry can complement GPR methods for accurately delineating a shallow cave section approximately 10 X 10 mt in size. Conversely, GPR methods can be complementary in determining cavity depths and in verifying the presence of off-line features and numerous areas of small cavities and fractures, which may be difficult to resolve in microgravimetric data.
Resumo:
Global positioning systems (GPS) offer a cost-effective and efficient method to input and update transportation data. The spatial location of objects provided by GPS is easily integrated into geographic information systems (GIS). The storage, manipulation, and analysis of spatial data are also relatively simple in a GIS. However, many data storage and reporting methods at transportation agencies rely on linear referencing methods (LRMs); consequently, GPS data must be able to link with linear referencing. Unfortunately, the two systems are fundamentally incompatible in the way data are collected, integrated, and manipulated. In order for the spatial data collected using GPS to be integrated into a linear referencing system or shared among LRMs, a number of issues need to be addressed. This report documents and evaluates several of those issues and offers recommendations. In order to evaluate the issues associated with integrating GPS data with a LRM, a pilot study was created. To perform the pilot study, point features, a linear datum, and a spatial representation of a LRM were created for six test roadway segments that were located within the boundaries of the pilot study conducted by the Iowa Department of Transportation linear referencing system project team. Various issues in integrating point features with a LRM or between LRMs are discussed and recommendations provided. The accuracy of the GPS is discussed, including issues such as point features mapping to the wrong segment. Another topic is the loss of spatial information that occurs when a three-dimensional or two-dimensional spatial point feature is converted to a one-dimensional representation on a LRM. Recommendations such as storing point features as spatial objects if necessary or preserving information such as coordinates and elevation are suggested. The lack of spatial accuracy characteristic of most cartography, on which LRM are often based, is another topic discussed. The associated issues include linear and horizontal offset error. The final topic discussed is some of the issues in transferring point feature data between LRMs.
Resumo:
Diplomityön tavoitteena oli tarkastella numeerisen virtauslaskennan avulla virtaukseen liittyviä ilmiöitä ja kaasun dispersiota. Diplomityön sisältö on jaettu viiteen osaan; johdantoon, teoriaan, katsaukseen virtauksen mallinnukseen huokoisessa materiaalissa liittyviin tutkimusselvityksiin, numeeriseen mallinnukseen sekä tulosten esittämiseen ja johtopäätöksiin. Diplomityön alussa kiinnitettiin huomiota erilaisiin kokeellisiin, numeerisiin ja teoreettisiin mallinnusmenetelmiin, joilla voidaan mallintaa virtausta huokoisessa materiaalissa. Kirjallisuusosassa tehtiin katsaus aikaisemmin julkaistuihin puoliempiirisiin ja empiirisiin tutkimusselvityksiin, jotka liittyvät huokoisen materiaalin aiheuttamaan painehäviöön. Numeerisessa virtauslaskenta osassa rakennettiin ja esitettiin huokoista materiaalia kuvaavat numeeriset mallit käyttäen kaupallista FLUENT -ohjelmistoa. Työn lopussa arvioitiin teorian, numeerisen virtauslaskennan ja kokeellisten tutkimusselvitysten tuloksia. Kolmiulotteisen huokoisen materiaalinnumeerisessa mallinnuksesta saadut tulokset vaikuttivat lupaavilta. Näiden tulosten perusteella tehtiin suosituksia ajatellen tulevaa virtauksen mallinnusta huokoisessa materiaalissa. Osa tässä diplomityössä esitetyistä tuloksista tullaan esittämään 55. Kanadan Kemiantekniikan konferenssissa Torontossa 1619 Lokakuussa 2005. ASME :n kansainvälisessä tekniikan alan julkaisussa. Työ on hyväksytty esitettäväksi esitettäväksi laskennallisen virtausmekaniikan (CFD) aihealueessa 'Peruskäsitteet'. Lisäksi työn yksityiskohtaiset tulokset tullaan lähettämään myös CES:n julkaisuun.
Resumo:
Fluid mixing in mechanically agitated tanks is one of the major unit operations in many industries. Bubbly flows have been of interest among researchers in physics, medicine, chemistry and technology over the centuries. The aim of this thesis is to use advanced numerical methods for simulating microbubble in an aerated mixing tank. Main components of the mixing tank are a cylindrical vessel, a rotating Rushton turbine and the air nozzle. The objective of Computational Fluid Dynamics (CFD) is to predict fluid flow, heat transfer, mass transfer and chemical reactions. The CFD simulations of a turbulent bubbly flow are carried out in a cylindrical mixing tank using large eddy simulation (LES) and volume of fluid (VOF) method. The Rushton turbine induced flow is modeled by using a sliding mesh method. Numerical results are used to describe the bubbly flows in highly complex liquid flow. Some of the experimental works related to turbulent bubbly flow in a mixing tank are briefly reported. Numerical simulations are needed to complete and interpret the results of the experimental work. Information given by numerical simulations has a major role in designing and scaling-up mixing tanks. The results of this work have been reported in the following scientific articles: ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Large eddy simulations and PIV experiments of a two-phase air-water mixer, in Proceedings of ASME Fluids Engineering Summer Conference (2005). ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Dynamical States of Bubbling in an Aerated Stirring Tank, submitted to J. Computational Physics.
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.
Resumo:
KAM is a computer program that can automatically plan, monitor, and interpret numerical experiments with Hamiltonian systems with two degrees of freedom. The program has recently helped solve an open problem in hydrodynamics. Unlike other approaches to qualitative reasoning about physical system dynamics, KAM embodies a significant amount of knowledge about nonlinear dynamics. KAM's ability to control numerical experiments arises from the fact that it not only produces pictures for us to see, but also looks at (sic---in its mind's eye) the pictures it draws to guide its own actions. KAM is organized in three semantic levels: orbit recognition, phase space searching, and parameter space searching. Within each level spatial properties and relationships that are not explicitly represented in the initial representation are extracted by applying three operations ---(1) aggregation, (2) partition, and (3) classification--- iteratively.
Resumo:
Course notes for the Numerical Methods course (joint MATH3018 and MATH6111). Originally by Giampaolo d'Alessandro, modified by Ian Hawke. These contain only minimal examples and are distributed as is; examples are given in the lectures.
Resumo:
These are the slides used in the joint lectures for MATH3018/MATH6111. They focus on the examples that do not appear in the course notes (see related material). Each lecture comes with example Matlab files that generate the figures used in the lectures.
Resumo:
These worksheets are formative assessment for the Numerical Methods modules MATH3018 and MATH6111 (some material is only covered in MATH3018). Intended to back up both the theory and the coding (in Matlab) side
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
Exact error estimates for evaluating multi-dimensional integrals are considered. An estimate is called exact if the rates of convergence for the low- and upper-bound estimate coincide. The algorithm with such an exact rate is called optimal. Such an algorithm has an unimprovable rate of convergence. The problem of existing exact estimates and optimal algorithms is discussed for some functional spaces that define the regularity of the integrand. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Holder type conditions. The aim of the paper is to analyze the performance of two optimal classes of algorithms: deterministic and randomized for computing multidimensional integrals. It is also shown how the smoothness of the integrand can be exploited to construct better randomized algorithms.
Resumo:
This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering equation in order to create photorealistic images. In this work we consider the Monte Carlo solving of the rendering equation in the context of the parallel sampling scheme for hemisphere. Our aim is to apply this sampling scheme to stratified Monte Carlo integration method for parallel solving of the rendering equation. The domain for integration of the rendering equation is a hemisphere. We divide the hemispherical domain into a number of equal sub-domains of orthogonal spherical triangles. This domain partitioning allows to solve the rendering equation in parallel. It is known that the Neumann series represent the solution of the integral equation as a infinity sum of integrals. We approximate this sum with a desired truncation error (systematic error) receiving the fixed number of iteration. Then the rendering equation is solved iteratively using Monte Carlo approach. At each iteration we solve multi-dimensional integrals using uniform hemisphere partitioning scheme. An estimate of the rate of convergence is obtained using the stratified Monte Carlo method. This domain partitioning allows easy parallel realization and leads to convergence improvement of the Monte Carlo method. The high performance and Grid computing of the corresponding Monte Carlo scheme are discussed.