909 resultados para nonstationary subshift of finite type


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel design of a moving-coil transducer coupled with a low-hardness elastomer called “the gel surround” is presented in this thesis. This device is termed a “gel-type audio transducer”. The gel-type audio transducer has been developed to overcome the problems that conventional loudspeakers have suffered - that is, the problem with size of the audio device against the quality of sound at low frequency range. Therefore the research work presented herein aims to develop the “gel-type audio transducer” as a next-generation audio transducer for miniaturized woofers. The gel-type audio transducer consists of the magnetic and coil-drive plate assembly, and these parts are coupled by the gel surround. The transducer is driven by the electromagnetic conversion mechanism (a moving-coil transducer) and its output driving force can be greatly enhanced by applying the novel mechanism of the gel surround especially at low frequency range, resulting in the enhanced acoustic efficiency. The transducer can be attached to a stiff and light panel with both the optimized impedance matching and minimised wave collisions. The performance of the gel-type audio transducer is greatly influenced by the mass of the magnetic assembly and compliance of the “gel surround”. But as the size of the magnet and its weight have to be kept minimal for a miniaturisation of the device, the focus of the research is on the effect of the of the gel surround. As a result, the effect of the gel surround, made of the RTV (room-temperature vulcanising) silicone elastomer, TPE (thermoplastic elastomer), and the silicone foam, on generation of the output driving force, the energy transfer from the transducer to a panel to which the transducer is attached, and sound radiation from the vibrating panel, was investigated. This effect was studied by COMSOL multiphysics (FE analysis) and thereby, the simulated results were verified by experiments such as the laser scanning measurement, DMA (dynamic mechanical analyzer), and the acoustic test. Successful development of prototypes of the gel-type audio transducers, with an enhanced acoustic efficiency at reduced size and weight, was achieved. Implementation of the transducers into consumer applications was also demonstrated with their commercial values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The final publication is available at Springer via http://dx.doi.org/10.1007/s10693-015-0230-1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give an explicit and easy-to-verify characterization for subsets in finite total orders (infinitely many of them in general) to be uniformly definable by a first-order formula. From this characterization we derive immediately that Beth's definability theorem does not hold in any class of finite total orders, as well as that McColm's first conjecture is true for all classes of finite total orders. Another consequence is a natural 0-1 law for definable subsets on finite total orders expressed as a statement about the possible densities of first-order definable subsets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buried heat sources can be investigated by examining thermal infrared images and comparing these with the results of theoretical models which predict the thermal anomaly a given heat source may generate. Key factors influencing surface temperature include the geometry and temperature of the heat source, the surface meteorological environment, and the thermal conductivity and anisotropy of the rock. In general, a geothermal heat flux of greater than 2% of solar insolation is required to produce a detectable thermal anomaly in a thermal infrared image. A heat source of, for example, 2-300K greater than the average surface temperature must be a t depth shallower than 50m for the detection of the anomaly in a thermal infrared image, for typical terrestrial conditions. Atmospheric factors are of critical importance. While the mean atmospheric temperature has little significance, the convection is a dominant factor, and can act to swamp the thermal signature entirely. Given a steady state heat source that produces a detectable thermal anomaly, it is possible to loosely constrain the physical properties of the heat source and surrounding rock, using the surface thermal anomaly as a basis. The success of this technique is highly dependent on the degree to which the physical properties of the host rock are known. Important parameters include the surface thermal properties and thermal conductivity of the rock. Modelling of transient thermal situations was carried out, to assess the effect of time dependant thermal fluxes. One-dimensional finite element models can be readily and accurately applied to the investigation of diurnal heat flow, as with thermal inertia models. Diurnal thermal models of environments on Earth, the Moon and Mars were carried out using finite elements and found to be consistent with published measurements. The heat flow from an injection of hot lava into a near surface lava tube was considered. While this approach was useful for study, and long term monitoring in inhospitable areas, it was found to have little hazard warning utility, as the time taken for the thermal energy to propagate to the surface in dry rock (several months) in very long. The resolution of the thermal infrared imaging system is an important factor. Presently available satellite based systems such as Landsat (resolution of 120m) are inadequate for detailed study of geothermal anomalies. Airborne systems, such as TIMS (variable resolution of 3-6m) are much more useful for discriminating small buried heat sources. Planned improvements in the resolution of satellite based systems will broaden the potential for application of the techniques developed in this thesis. It is important to note, however, that adequate spatial resolution is a necessary but not sufficient condition for successful application of these techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HFE is a transmembrane protein that becomes N-glycosylated during transport to the cell membrane. It acts to regulate cellular iron uptake by interacting with the Type 1 transferrin receptor and interfering with its ability to bind iron-loaded transferrin. There is also evidence that HFE regulates systemic iron levels by binding to the Type II transferrin receptor although the mechanism by which this occurs is still not well understood. Mutations to HFE that disrupt this function, or physiological conditions that decrease HFE protein levels, are associated with increased iron uptake, and its accumulation in tissues and organs. This is exemplified by the point mutation that results in conversion of cysteine residue 282 to tyrosine (C282Y), and gives rise to the majority of HFE-related hemochromatoses. The C282Y mutation prevents the formation of a disulfide bridge and disrupts the interaction with its co-chaperone β2-microglobulin. The resulting misfolded protein is retained within the endoplasmic reticulum (ER) where it activates the Unfolded Protein Response (UPR) and is subjected to proteasomal degradation. The absence of functional HFE at the cell surface leads to unregulated iron uptake and iron loading. While the E3 ubiquitin ligase involved in the degradation of HFE-C282Y has been identified, the mechanism by which it is targeted for degradation remains relatively obscure. The primary objective of this project was to further our understanding of how the iron regulatory HFE protein is targeted for degradation. Our studies suggest that the glycosylation status, and the active process of deglycosylation, are central to this process. We identified a number of additional factors that can contribute towards degradation and explored their regulation during ER stress conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type II alveolar epithelial cells (AECII) are well known for their role in the innate immune system. More recently, it was proposed that they could play a role in the antigen presentation to T lymphocytes but contradictory results have been published both concerning their surface expressed molecules and the T lymphocyte responses in mixed lymphocyte cultures. The use of either AECII cell line or fresh cells could explain the observed discrepancies. Thus, this study aimed at defining the most relevant model of accessory antigen presenting cells by carefully comparing the two models for their expression of surface molecules necessary for efficient antigen presentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel three-dimensional finite volume (FV) procedure is described in detail for the analysis of geometrically nonlinear problems. The FV procedure is compared with the conventional finite element (FE) Galerkin approach. FV can be considered to be a particular case of the weighted residual method with a unit weighting function, where in the FE Galerkin method we use the shape function as weighting function. A Fortran code has been developed based on the finite volume cell vertex formulation. The formulation is tested on a number of geometrically nonlinear problems. In comparison with FE, the results reveal that FV can reach the FE results in a higher mesh density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DRAMA library, developed within the European Commission funded (ESPRIT) project DRAMA, supports dynamic load-balancing for parallel (message-passing) mesh-based applications. The target applications are those with dynamic and solution-adaptive features. The focus within the DRAMA project was on finite element simulation codes for structural mechanics. An introduction to the DRAMA library will illustrate that the very general cost model and the interface designed specifically for application requirements provide simplified and effective access to a range of parallel partitioners. The main body of the paper will demonstrate the ability to provide dynamic load-balancing for parallel FEM problems that include: adaptive meshing, re-meshing, the need for multi-phase partitioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl vinyl ether-co-maleic anhydride) formed films from aqueous formulations with characteristics that are ideal as a basis for producing a drug-containing bioadhesive delivery system when plasticized with a monohydroxyl functionalized plasticizer. Hence, films containing a novel plasticizer, tripropylene glycol methyl ether (TPME), maintained their adhesive strength and tensile properties when packaged in aluminized foil for extended periods of time. Films plasticized with commonly used polyhydric alcohols, such as the glycerol in this study, underwent an esterification reaction that led to polymer crosslinking, as shown in NMR studies. These revealed the presence of peaks in the ester/carbonyl region, suggesting that glyceride residue formation had been initiated. Given the polyfunctional nature of glycerol, progressive esterification would result in a polyester network and an accompanying profound alteration in the physical characteristics. Indeed, films became brittle over time with a loss of both the aqueous solubility and bioadhesion to porcine skin. In addition, a swelling index was measurable after 7 days, a property not seen with those films containing TPME. This change in bioadhesive strength and pliability was independent of the packaging conditions, rendering the films that contain glycerol as unsuitable as a basis for topical bioadhesive delivery of drug substances. Consequently, films containing TPME have potential as an alternative formulation strategy.