882 resultados para non-linear regression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene is in the focus of research due to its unique electronic and optical properties. Intrinsic graphene is a zero gap semiconductor with a linear dispersion relation for E-k leading to zero-effective-mass electrons and holes described by Fermi-Dirac theory. Since pristine graphene has no bandgap no photoluminescence would be expected. However, recently several groups showed non-linear photoluminescence from pristine graphene putting forward different physical models explaining this remarkable effect [1-3]. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of a computational study of the post-processed Galerkin methods put forward by Garcia-Archilla et al. applied to the non-linear von Karman equations governing the dynamic response of a thin cylindrical panel periodically forced by a transverse point load. We spatially discretize the shell using finite differences to produce a large system of ordinary differential equations (ODEs). By analogy with spectral non-linear Galerkin methods we split this large system into a 'slowly' contracting subsystem and a 'quickly' contracting subsystem. We then compare the accuracy and efficiency of (i) ignoring the dynamics of the 'quick' system (analogous to a traditional spectral Galerkin truncation and sometimes referred to as 'subspace dynamics' in the finite element community when applied to numerical eigenvectors), (ii) slaving the dynamics of the quick system to the slow system during numerical integration (analogous to a non-linear Galerkin method), and (iii) ignoring the influence of the dynamics of the quick system on the evolution of the slow system until we require some output, when we 'lift' the variables from the slow system to the quick using the same slaving rule as in (ii). This corresponds to the post-processing of Garcia-Archilla et al. We find that method (iii) produces essentially the same accuracy as method (ii) but requires only the computational power of method (i) and is thus more efficient than either. In contrast with spectral methods, this type of finite-difference technique can be applied to irregularly shaped domains. We feel that post-processing of this form is a valuable method that can be implemented in computational schemes for a wide variety of partial differential equations (PDEs) of practical importance.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we tackle the problem of learning a linear regression model whose parameter is a fixed-rank matrix. We study the Riemannian manifold geometry of the set of fixed-rank matrices and develop efficient line-search algorithms. The proposed algorithms have many applications, scale to high-dimensional problems, enjoy local convergence properties and confer a geometric basis to recent contributions on learning fixed-rank matrices. Numerical experiments on benchmarks suggest that the proposed algorithms compete with the state-of-the-art, and that manifold optimization offers a versatile framework for the design of rank-constrained machine learning algorithms. Copyright 2011 by the author(s)/owner(s).