848 resultados para non-Western cultures
Resumo:
El Jardí del Set Crepuscles –primera novela del escritor y arquitecto catalán Miquel de Palol– nos brinda la oportunidad de reflexionar acerca de la metamorfosis experimentada por la ciudad occidental a principios de los años setenta del siglo pasado. De acuerdo con autores como Henri Lefebvre, David Harvey, Giandomenico Amendola o Edward Soja, el surgimiento de la ciudad posmoderna en el marco de la transición hacia el modo de acumulación postfordista se presenta acompañado por un debilitamiento del tejido social y de la esfera pública y cívica. El objetivo del presente artículo es ilustrar las estrategias narrativas y retóricas con las que el texto de Miquel de Palol representa, y analiza, dicho fenómeno.
Resumo:
College students (N = 3,435) in 26 cultures reported their perceptions of age-related changes in physical, cognitive, and socioemotional areas of functioning and rated societal views of aging within their culture. There was widespread cross-cultural consensus regarding the expected direction of aging trajectories with (a) perceived declines in societal views of aging, physical attractiveness, the ability to perform everyday tasks, and new learning; (b) perceived increases in wisdom, knowledge, and received respect; and (c) perceived stability in family authority and life satisfaction. Cross-cultural variations in aging perceptions were associated with culture-level indicators of population aging, education levels, values, and national character stereotypes. These associations were stronger for societal views on aging and perceptions of socioemotional changes than for perceptions of physical and cognitive changes. A consideration of culture-level variables also suggested that previously reported differences in aging perceptions between Asian and Western countries may be related to differences in population structure.
Resumo:
Recent debates on time-use suggest that there is an inverse relationship between time poverty and income poverty (Aguiar and Hurst in Q J Econ C(3):969-1006, 2007), with Hammermesh and Lee (Rev Econ Stat 89(2):374-383, 2007) suggesting much time poverty is 'yuppie kvetch' or 'complaining'. Gershuny (Soc Res Int Q Soc Sci 72(2):287-314, 2005) argues that busyness is the 'badge of honour': being busy is now a positive, privileged position and it is high status people who work long hours and feel busy. Is this also true of work-life conflict? This paper explores the relationship between work-life tension and social inequality, as measured by social class, drawing on evidence from the European Social Survey. To what extent is work-life conflict a problem of the (comparatively) rich and privileged professional/managerial classes, and is this true across European countries? The countries selected offer a range of institutional and policy configurations to maximise variation. Using regression modelling of an index of subjective work-life conflict, we find that in all the countries under study, work-life conflict is higher among professionals than non-professionals. Part of this is explained by the fact that professionals work longer hours and experience more work pressure than other social classes, though the effect remains even after accounting for these factors. While levels of work-life conflict vary across the countries studied, country variation in class differences is modest. We consider other explanations of why professionals report higher work-life conflict and the implications of our findings for debates on social inequality.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The literature has difficulty explaining why the number of parties in majoritarian electoral systems often exceeds the two-party predictions associated with Duverger’s Law. To understand why this is the case, I examine several party systems in Western Europe before the adoption of proportional representation. Drawing from the social cleavage approach, I argue that the emergence of multiparty systems was because of the development of the class cleavage, which provided a base of voters sizeable enough to support third parties. However, in countries where the class cleavage became the largest cleavage, the class divide displaced other cleavages and the number of parties began to converge on two. The results show that the effect of the class cleavage was nonlinear, producing the greatest party system fragmentation in countries where class cleavages were present – but not dominant – and smaller in countries where class cleavages were either dominant or non-existent.
Resumo:
DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2.
Resumo:
Burkholderia cepacia complex (Bcc) comprises nine closely related species or genomovars. It is an important causative agent of opportunistic infections and waterborne nosocomial infections. B. cepacia (formerly genomovar I) was identified from the blood culture of a baby in our neonatal unit (NU) in March 2005. B. cepacia was isolated four times from clinical specimens since the introduction of non-touch taps in the NU from 2000 to 2005 and only once from 1994 to 2000. Environmental samples were collected from the NU, including tap water from non-touch taps. Clinical and environmental isolates of Bcc were characterized using molecular identification and strain typing. A literature review was undertaken to delineate a method for eradication of Bcc. Several variations for hot water eradication of the organism from the taps were attempted. Genotyping and molecular analysis revealed that tap water isolates were B. cenocepacia which was a different species from the B. cepacia isolated from blood cultures of the neonate. However, B. cenocepacia has been known to cause nosocomial outbreaks and it was eventually eradicated from the NU by using repeated thermal shock (hot water at 65 degrees C for 10 min), changing taps and decolonizing sinks with hypochlorite. Molecular typing is useful in assisting the investigation of Bcc nosocomial infections.
Resumo:
The inflammatory response to pulpal injury or infection has major clinical significance. Neurogenic inflammation describes the local release of neuropeptides, notably substance P (SP), from afferent neurones, and may play a role in the pathogenesis of pulpal disease. The fibroblast is the most numerous cell type in the dental pulp and recent work has suggested that it is involved in the inflammatory response. Objectives: The aims of the study were to determine whether pulp fibroblasts could produce SP, and to investigate the expression of the SP receptor, NK-1, by these cells. Methods: Primary pulp fibroblast cell populations were isolated by enzymatic digestion from non-carious teeth extracted for orthodontic reasons. Whole pulp tissue was obtained from freshly extracted sound (n=35) and carious (n=39) teeth. Expression of SP and NK-1 mRNA was determined by RT-PCR. The effects of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) on SP and NK-1 expression were also determined. The presence of NK-1 on fibroblast cell membranes was established by western blotting. The effects of the cytokines on each parameter were analysed by ANOVA. Radioimmunoassay (RIA) was carried out to quantify SP expression by pulp fibroblasts and in whole pulp tissue. Results: SP was expressed by pulpal fibroblasts both at the mRNA level and the protein level. In addition, NK-1 was detected in fibroblast cultures at the mRNA level and appeared as a double band on western blots of membrane extracts. IL-1β and TGF-β1 significantly stimulated the expression of SP and NK-1. SP levels were significantly greater (p<0.05) in carious compared to sound teeth. Conclusion: Pulp fibroblasts are capable of synthesising and secreting SP, as well as expressing the SP receptor, NK-1. These findings suggest that pulp fibroblasts play a role in neurogenic inflammation in pulpal disease. (Supported by the European Society of Endodontology.)
Resumo:
Polyhydroxyalkanoates (PHAs) are natural biologically synthesized polymers that have been the subject of much interest in the last decades due to their biodegradability. Thus far, its microbial production is associated with high operational costs, which increases PHA prices and limits its marketability. To address this situation, this thesis’ work proposes the utilization of photosynthetic mixed cultures (PMC) as a new PHA production system that may lead to a reduction in operational costs. In fact, the operational strategies developed in this work led to the selection of PHA accumulating PMCs that, unlike the traditional mixed microbial cultures, do not require aeration, thus permitting savings in this significant operational cost. In particular, the first PHA accumulating PMC tested in this work was selected under non-aerated illuminated conditions in a feast and famine regime, being obtained a consortium of bacteria and algae, where photosynthetic bacteria accumulated PHA during the feast phase and consumed it for growth during the famine phase, using the oxygen produced by algae. In this symbiotic system, a maximum PHA content of 20% cell dry weight (cdw) was reached, proving for the first time, the capacity of a PMC to accumulate PHA. During adaptation to dark/light alternating conditions, the culture decreased its algae content but maintained its viability, achieving a PHA content of 30% cdw. Also, the PMC was found to be able to utilize different volatile fatty acids for PHA production, accumulating up to 20% cdw of a PHA co-polymer composed of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (HV) monomers. Finally, a new selective approach for the enrichment of PMCs in PHA accumulating bacteria was tested. Instead of imposing a feast and famine regime, a permanent feast regime was used, thus selecting a PMC that was capable of simultaneously growing and accumulating PHA, being attained a maximum PHA content of 60% cdw, the highest value reported for a PMC thus far. The results presented in this thesis prospect the utilization of cheap, VFA-rich fermented wastes as substrates for PHA production, which combined with this new photosynthetic technology opens up the possibility for direct sunlight illumination, leading to a more cost-effective and environmentally sustainable PHA production process.
Resumo:
Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.
Resumo:
A 3D in vitro model of rat organotypic brain cell cultures in aggregates was used to investigate neurotoxicity mechanisms in glutaric aciduria type I (GA-I). 1 mM glutarate (GA) or 3-hydroxyglutarate (3OHGA) were repeatedly added to the culture media at two different time points. In cultures treated with 3OHGA, we observed an increase in lactate in the medium, pointing to a possible inhibition of Krebs cycle and respiratory chain. We further observed that 3OHGA and to a lesser extend GA induced an increase in ammonia production with concomitant decrease of glutamine concentrations, which may suggest an inhibition of the astrocytic enzyme glutamine synthetase. These previously unreported findings may uncover a pathogenic mechanism in this disease which has deleterious effects on early stages of brain development. By immunohistochemistry we showed that 3OHGA increased non-apoptotic cell death. On the cellular level, 3OHGA and to a lesser extend GA led to cell swelling and loss of astrocytic fibers whereas a loss of oligodendrocytes was only observed for 3OHGA. We conclude that 3OHGAwas the most toxic metabolite in our model for GA-I. 3OHGA induced deleterious effects on glial cells, an increase of ammonia production, and resulted in accentuated cell death of non-apoptotic origin.
Resumo:
College students (N = 3,435) in 26 cultures reported their perceptions of age-related changes in physical cognitive, and socioemotional areas of functioning and rated societal views of aging within their culture. There was widespread cross-cultural consensus regarding the expected direction of aging trajectories with (a) perceived declines in societal views of aging, physical attractiveness, the ability to perform everyday tasks, and new learning; (b) perceived increases in wisdom, knowledge, and received respect; and (c) perceived stability in family authority and life satisfaction. Cross-cultural variations in aging perceptions were associated with culture-level indicators of population aging, education levels, values, and national character stereotypes. These associations were stronger for societal views on aging and perceptions of socioemotional changes than for perceptions of physical and cognitive changes. A consideration of culture-level variables also suggested that previously reported differences in aging perceptions between Asian and Western countries may be related to differences in population structure.
Resumo:
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
We report the first case of meticillin-resistant Staphylococcus aureus (MRSA) with the mecC gene in a patient in western Switzerland. After this first identification, a polymerase chain reaction protocol was established to investigate the occurrence of this new mecC gene in the population of this region. Enrichment broths were investigated from 1062 patients screened for MRSA, meticillin-susceptible Staphylococcus aureus isolates from clinical specimens from 475 patients, and 80 MRSA isolates (from 2005 to 2011) showing discrepancies between genotypic and phenotypic meticillin resistance. None was positive for mecC, suggesting that it is rare in the patient population of this region.