952 resultados para no conforming mesh


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian (ALE) method for the solution of the Euler equations is described. An efficient approach to equipotential mesh relaxation on anisotropically refined meshes is developed. Results for two test problems are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative meshes of the sphere and adaptive mesh refinement could be immensely beneficial for weather and climate forecasts, but it is not clear how mesh refinement should be achieved. A finite-volume model that solves the shallow-water equations on any mesh of the surface of the sphere is presented. The accuracy and cost effectiveness of four quasi-uniform meshes of the sphere are compared: a cubed sphere, reduced latitude–longitude, hexagonal–icosahedral, and triangular–icosahedral. On some standard shallow-water tests, the hexagonal–icosahedral mesh performs best and the reduced latitude–longitude mesh performs well only when the flow is aligned with the mesh. The inclusion of a refined mesh over a disc-shaped region is achieved using either gradual Delaunay, gradual Voronoi, or abrupt 2:1 block-structured refinement. These refined regions can actually degrade global accuracy, presumably because of changes in wave dispersion where the mesh is highly nonuniform. However, using gradual refinement to resolve a mountain in an otherwise coarse mesh can improve accuracy for the same cost. The model prognostic variables are height and momentum collocated at cell centers, and (to remove grid-scale oscillations of the A grid) the mass flux between cells is advanced from the old momentum using the momentum equation. Quadratic and upwind biased cubic differencing methods are used as explicit corrections to a fast implicit solution that uses linear differencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1–20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow in the world's oceans occurs at a wide range of spatial scales, from a fraction of a metre up to many thousands of kilometers. In particular, regions of intense flow are often highly localised, for example, western boundary currents, equatorial jets, overflows and convective plumes. Conventional numerical ocean models generally use static meshes. The use of dynamically-adaptive meshes has many potential advantages but needs to be guided by an error measure reflecting the underlying physics. A method of defining an error measure to guide an adaptive meshing algorithm for unstructured tetrahedral finite elements, utilizing an adjoint or goal-based method, is described here. This method is based upon a functional, encompassing important features of the flow structure. The sensitivity of this functional, with respect to the solution variables, is used as the basis from which an error measure is derived. This error measure acts to predict those areas of the domain where resolution should be changed. A barotropic wind driven gyre problem is used to demonstrate the capabilities of the method. The overall objective of this work is to develop robust error measures for use in an oceanographic context which will ensure areas of fine mesh resolution are used only where and when they are required. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Estimates of seed bank depletion rates are essential for modelling and management of plant populations. The seed bag burial method is often used to measure seed mortality in the soil. However, the density of seeds within seed bags is higher than densities in natural seed banks, which may elevate levels of pathogens and influence seed mortality. The aim of this study was to quantify the effects of fungi and seed density within buried mesh bags on the mortality of seeds. Striga hermonthica was chosen as the study species because it has been widely studied but different methods for measuring seed mortality in the soil have yielded contradictory estimates. 2. Seed bags were buried in soil and exhumed at regular time intervals to monitor mortality of the seeds in three field experiments during two rainy seasons. The effect of fungal activity on seed mortality was evaluated in a fungi exclusion experiment. Differences in seed-to-seed interaction were obtained by using two and four densities within the seed bags in consecutive years. Densities were created by mixing 1000 seeds with 0, 10, 100 or 1000 g of coarse sand. 3. The mortality rate was significantly lower when fungi were excluded, indicating the possible role of pathogenic fungi. 4. Decreasing the density of seeds in bags significantly reduced seed mortality, most probably because of decreased seed-to-seed contamination by pathogenic fungi. 5. Synthesis and applications. Models of plant populations in general and annual weeds in particular often use values from the literature for seed bank depletion rates. These depletion rates have often been estimated by the seed bag burial method, yet seed density within seed bags may be unrealistically high. Consequently, estimates of seed mortality rates may be too high because of an overestimation of the effects of soil or seed-borne pathogens. Species that have been classified from such studies as having short-lived seed banks may need to be re-assessed using realistic densities either within seed bags or otherwise. Similarly, models of seed bank dynamics based on such overestimated depletion rates may lead to incorrect conclusions regarding the seed banks and, perhaps, the management of weeds and rare species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-uniform mesh scheme is presented for the computation of compressible flows governed by the Euler equations of gas dynamics. The scheme is based on flux-difference splitting and represents an extension of a similar scheme designed for uniform meshes. The numerical results demonstrate that little, if any, spurious oscillation occurs as a result of the non-uniformity of the mesh; and importantly, shock speeds are computed correctly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distributed Lagrangian moving-mesh finite element method is applied to problems involving changes of phase. The algorithm uses a distributed conservation principle to determine nodal mesh velocities, which are then used to move the nodes. The nodal values are obtained from an ALE (Arbitrary Lagrangian-Eulerian) equation, which represents a generalization of the original algorithm presented in Applied Numerical Mathematics, 54:450--469 (2005). Having described the details of the generalized algorithm it is validated on two test cases from the original paper and is then applied to one-phase and, for the first time, two-phase Stefan problems in one and two space dimensions, paying particular attention to the implementation of the interface boundary conditions. Results are presented to demonstrate the accuracy and the effectiveness of the method, including comparisons against analytical solutions where available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a number of velocity-based moving mesh numerical methods formultidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ECMWF operational grid point model (with a resolution of 1.875° of latitude and longitude) and its limited area version (with a resolution of !0.47° of latitude and longitude) with boundary values from the global model have been used to study the simulation of the typhoon Tip. The fine-mesh model was capable of simulating the main structural features of the typhoon and predicting a fall in central pressure of 60 mb in 3 days. The structure of the forecast typhoon, with a warm core (maximum potential temperature anomaly 17 K). intense swirling wind (maximum 55 m s-1 at 850 mb) and spiralling precipitation patterns is characteristic of a tropical cyclone. Comparison with the lower resolution forecast shows that the horizontal resolution is a determining factor in predicting not only the structure and intensity but even the movement of these vortices. However, an accurate and refined initial analysis is considered to be a prerequisite for a correct forecast of this phenomenon.