948 resultados para neutron - rich nucleus high - spin states


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here three examples of the reactivity of protic nucleophiles with diimine-type ligands in the presence of FeII salts. In the first case, the iron-promoted alcoholysis reaction of one nitrile group of the ligand 2,3-dicyano-5,6-bis(2-pyridyl)-pyrazine (L1) permitted the isolation of an stable E-imido−ester, [Fe(L1‘)2](CF3SO3)2 (1), which has been characterized by spectroscopic studies (IR, ES-MS, Mössbauer), elemental analysis, and crystallographically. Compound 1 consists of mononuclear octahedrally coordinated FeII complexes where the FeII ion is in its low-spin state. The iron-mediated nucleophilic attack of water to the asymmetric ligand 2,3-bis(2-pyridyl)pyrido[3,4-b]pyrazine (L2) has also been studied. In this context, the crystal structures of two hydration−oxidation FeIII products, [Fe(L2‘)2](ClO4)3·3CH3CN (2) and trans-[FeL2‘‘Cl2] (3), are described. Compounds 2 and 3 are both mononuclear FeIII complexes where the metals occupy octahedral positions. In principle, L2 is expected to coordinate to metal ions through its bipyridine-type units to form a five-membered ring; however, this is not the case in compounds 2 and 3. In 2, the ligand coordinates through its pyridines and through the hydroxyl group attached to the pyrazine imino carbon after hydration, that is, in an N,O,N tridentate manner. In compound 3, the ligand has suffered further transformations leading to a very stable diamido complex. In this case, the metal ion achieves its octahedral geometry by means of two pyridines, two amido N atoms, and two axial chlorine atoms. Magnetic susceptibility measurements confirmed the spin state of these two FeIII species:  compounds 2 and 3 are low-spin and high-spin, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

57Fe Mössbauer spectra for 26 sediment and 6 carbonate concretion samples from Sites 798 and 799 were recorded at 293 K. Most spectra were deconvolved to two quadrupole doublets without magnetic hyperfine structure. Typical Mössbauer parameters were: isomer shift (I.S.) = 0.34 mm/s and quadrupole splitting (Q.S.) = 0.64 mm/s for the paramagnetic Fe3+ component (partly, pyrite); I.S. = 1.13 mm/s and Q.S. = 2.64 mm/s for the high-spin Fe2+ component derived from iron-bearing aluminosilicates. A few spectra included other high-spin Fe2+ components ascribed to iron-bearing carbonate minerals (e.g., ferroan magnesite), according to the Mössbauer parameters for Fe2+ in the carbonate concretions. We present the distribution of iron among different chemical forms as a function of depth. These data might indicate changes of depositional and diagenetic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modelling of critical infrastructures (CIs) is an important issue that needs to be properly addressed, for several reasons. It is a basic support for making decisions about operation and risk reduction. It might help in understanding high-level states at the system-of-systems layer, which are not ready evident to the organisations that manage the lower level technical systems. Moreover, it is also indispensable for setting a common reference between operator and authorities, for agreeing on the incident scenarios that might affect those infrastructures. So far, critical infrastructures have been modelled ad-hoc, on the basis of knowledge and practice derived from less complex systems. As there is no theoretical framework, most of these efforts proceed without clear guides and goals and using informally defined schemas based mostly on boxes and arrows. Different CIs (electricity grid, telecommunications networks, emergency support, etc) have been modelled using particular schemas that were not directly translatable from one CI to another. If there is a desire to build a science of CIs it is because there are some observable commonalities that different CIs share. Up until now, however, those commonalities were not adequately compiled or categorized, so building models of CIs that are rooted on such commonalities was not possible. This report explores the issue of which elements underlie every CI and how those elements can be used to develop a modelling language that will enable CI modelling and, subsequently, analysis of CI interactions, with a special focus on resilience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the 1.8-A crystal structure of the CD11a I-domain with bound manganese ion. The CD11a I-domain contains binding sites for intercellular adhesion molecules 1 and 3 and can exist in both low- and high-affinity states. The metal-bound form reported here is likely to represent a high-affinity state. The CD11a I-domain structure reveals a strained hydrophobic ridge adjacent to the bound metal ion that may serve as a ligand-binding surface and is likely to rearrange in the absence of bound metal ion. The CD11a I-domain is homologous to domains found in von Willebrand factor, and mapping of mutations found in types 2a and 2b von Willebrand disease onto this structure allows consideration of the molecular basis of these forms of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polímeros de coordenação têm atraído a atenção de pesquisadores na última década por conta de sua incrível versatilidade e virtualmente infinito número de possibilidades de combinação de ligantes orgânicos e centros metálicos. Estes compostos normalmente herdam as características magnéticas, eletrônicas e espectroscópicas de seus componentes base. Entretanto, apesar do crescente número de trabalhos na área, ainda são raros os polímeros de coordenação que apresentem condutividade elétrica. Para este fim, utilizou-se a N,N\'-bis(4-piridil)-1,4,5,8-naftaleno diimida, ou NDI-py, que pertence a uma classe de compostos rígidos, planares, quimicamente e termicamente estáveis e que já foram extensamente estudados por suas propriedades fotoeletroquímicas e semicondução do tipo n. O primeiro polímero de coordenação sintetizado, MOF-CoNDI-py-1, indicou ser um polímero linear, de estrutura 1D. O segundo, MOF-CoNDI-py-2, que conta com ácido tereftálico como ligante suporte, é um sólido cristalino com cela unitária monoclínica pertencente ao grupo espacial C2/c, determinado por difração de raios-X de monocristal. A rede apresenta um arranjo trinuclear de íons Co(II) alto spin com coordenados em uma geometria de octaedro distorcido, enquanto os ligantes NDI-py se encontram em um arranjo paralelo na estrutura, em distâncias apropriadas para transferência eletrônica. Com o auxílio de cálculo teóricos a nível de DFT, foi realizado um estudo aprofundado dos espectros eletrônicos e vibracionais, com atribuição das transições observadas, tanto para o MOF-CoNDI-py-2 quanto para o ligante NDI-py livre. A rede de coordenação absorve em toda a região do espectro eletrônico analisada, de 200 nm a 2500 nm, além de apresentar luminescência com característica do ligante. Dispositivos eletrônicos fabricados com um cristal do MOF-CoNDI-py-2 revelaram condutividades da ordem de 7,9 10-3 S cm -1, a maior já observada para um MOF. Além de elevada, a condutividade elétrica dos cristais demonstrou-se altamente anisotrópica, sendo significativamente menos condutor em algumas direções. Os perfis de corrente versus voltagem foram analisados em termos de mecanismos de condutividade, sendo melhores descritos por um mecanismo limitado pelo eletrodo to tipo Space-Charge Limited Current, concordando com a proposta de condutividade através dos planos de NDI-py na rede. A condutividade dos cristais também é fortemente dependente de luz, apresentando fotocondução quando irradiado por um laser vermelho, de 632 nm, enquanto apresenta um comportamento fotorresistivo frente a uma fonte de luz branca. Estes resultados, combinados, trazem um MOF em uma estrutura incomum e com elevada condutividade elétrica, modulada por luz, em medidas diretas de corrente. Não existem exemplos conhecidos de MOFs na literatura com estas características.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from (10,12-18C) and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1 pxn) for relativistic C-10,C-12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the EPAX code is not able to describe the data satisfactorily. Using ABRABLA07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease ABRABLA07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical spectroscopy of a single InAs quantum dot doped with a single Mn atom is studied using a model Hamiltonian that includes the exchange interactions between the spins of the quantum dot electron-hole pair, the Mn atom, and the acceptor hole. Our model permits linking the photoluminescence spectra to the Mn spin states after photon emission. We focus on the relation between the charge state of the Mn, A0 or A−, and the different spectra which result through either band-to-band or band-to-acceptor transitions. We consider both neutral and negatively charged dots. Our model is able to account for recent experimental results on single Mn doped InAs photoluminescence spectra and can be used to account for future experiments in GaAs quantum dots. Similarities and differences with the case of single Mn doped CdTe quantum dots are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the reversible electrical control of the magnetic properties of a single Mn atom in an individual quantum dot. Our device permits us to prepare the dot in states with three different electric charges, 0, +1e, and -1e which result in dramatically different spin properties, as revealed by photoluminescence. Whereas in the neutral configuration the quantum dot is paramagnetic, the electron-doped dot spin states are spin rotationally invariant and the hole-doped dot spins states are quantized along the growth direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"September 1996."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report the results of ab initio calculations on the energetics and kinetics of oxygen-driven carbon gasification reactions using a small model cluster, with full characterisation of the stationary points on the reaction paths. We show that previously unconsidered pathways present significantly reduced barriers to reaction and must be considered as alternative viable paths. At least two electronic spin states of the model cluster must be considered for a complete description. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the one-way channel formalism of quantum optics has a physical realization in electronic systems. In particular, we show that magnetic edge states form unidirectional quantum channels capable of coherently transporting electronic quantum information. Using the equivalence between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is feasible with reasonable experimental parameters. We discuss how this protocol may be used to transfer information encoded in number, charge, or spin states of quantum dots, so it may prove useful for transferring quantum information between parts of a solid-state quantum computer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of pressure and temperature on the energy (E-op) of the metal-to-metal charge transfer (MMCT, Fe-II --> Co-III) transition of the cyano-bridged complexes trans - [(LCoNCFe)-Co-14(CN)(5)](-) and cis-[(LCoNCFe)-Co-14(CN)(5)](-) (where L-14 = 6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine) were examined. The changes in the redox potentials of the cobalt and iron metal centres with pressure and temperature were also examined and the results interpreted with Marcus Hush theory. The observed redox reaction volumes can mainly be accounted for in terms of localised electrostriction effects. The shifts in E-op due to both pressure and temperature were found to be less than the shifts in the energy difference (E degrees) between the Co-III-Fe-II and Co-II-Fe-III redox isomers. The pressure and temperature dependence of the reorganisational energy, as well as contributions arising from the different spin states of Co-II, are discussed in order to account for this trend. To study the effect of pressure on Co-III electronic absorption bands, a new cyano-bridged complex, trans - [(LCoNCCo)-Co-14(CN)(5)], was prepared and characterised spectroscopically and structurally. X-Ray crystallography revealed this complex to be isostructural with trans -[(LCoNCFe)-Co-14(CN)(5)] center dot 5H(2)O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A binucleating potentially hexadentate chelating agent containing oxygen, nitrogen and sulfur as potential donor atoms (H2ONNO) has been synthesized by condensing alpha,alpha-xylenebis(N-methyldithiocarbazate) with 2,4-pentanedione. An X-ray crystallographic structure determination shows that the Schiff base remains in its ketoimine tautomeric form with the protons attached to the imine nitrogen atoms. The reaction of the Schiff base with nickel(II) acetate in a 1:1 stoichiometry leads to the formation of a dinuclear nickel(II) complex [Ni(ONNO)](2) (ONNO2- = dianionic form of the Schiff base) containing N,O-chelated tetradentate ligands, the sulfur donors remaining uncoordinated. A single crystal X-ray structure determination of this dimer reveals that each ligand binds two low spin nickel(II) ions, bridged by a xylyl group. The nickel(II) atoms adopt a distorted square-planar geometry in a trans-N2O2 donor environment. Reaction of the Schiff base with nickel(II) acetate in the presence of excess pyridine leads to the formation of a similar dinuclear complex, [Ni(ONNO)(py)](2), but in this case comprises five coordinate high-spin Ni(II) ions with pyridine ligands occupying the axial coordination sites as revealed by X-ray crystallographic analysis. (c) 2005 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure and magnetic properties of a penta-coordinate iron(III) complex of pyridoxal-4-methylthiosemicarbazone, [Fe(Hmthpy)Cl](CHCHSO), are reported. The synthesised ligand and the metal complex were characterised by spectroscopic methods (H NMR, IR, and mass spectroscopy), elemental analysis, and single crystal X-ray diffraction. The complex crystallises as dark brown microcrystals. The crystal data determined at 100(1) K revealed a triclinic system, space group P over(1, ¯) (Z = 2). The ONSCl geometry around the iron(III) atom is intermediate between trigonal bipyramidal and square pyramidal (t = 0.40). The temperature dependence of the magnetic susceptibility (5-300 K) is consistent with a high spin Fe(III) ion (S = 5/2) exhibiting zero-field splitting. Interpretation of these data yielded: D = 0.34(1) cm and g = 2.078(3). © 2007 Elsevier B.V. All rights reserved.