887 resultados para network traffic analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Consideration of consumers’ demand for food quality entails several aspects. Quality itself is a complex and dynamic concept, and constantly evolving technical progress may cause changes in consumers’ judgment of quality. To improve our understanding of the factors influencing the demand for quality, food quality must be defined and measured from the consumer’s perspective (Cardello, 1995). The present analysis addresses the issue of food quality, focusing on pork—the food that respondents were concerned about. To gain insight into consumers’ demand, we analyzed their perception and evaluation and focused on their cognitive structures concerning pork quality. In order to more fully account for consumers’ concerns about the origin of pork, in 2004 we conducted a consumer survey of private households. The qualitative approach of concept mapping was used to uncover the cognitive structures. Network analysis was applied to interpret the results. In order to make recommendations to enterprises, we needed to know what kind of demand emerges from the given food quality schema. By establishing the importance and relative positions of the attributes, we find that the country of origin and butcher may be the two factors that have the biggest influence on consumers’ decisions about the purchase of pork.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We address the problem of scheduling a multiclass $M/M/m$ queue with Bernoulli feedback on $m$ parallel servers to minimize time-average linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov's optimal solution to the single-server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds (approximate optimality) for Klimov's rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates, as long as they stay within system capacity;and (ii) the number of servers. It follows that its relativesuboptimality gap vanishes in a heavy-traffic limit, as external arrival rates approach system capacity (heavy-traffic optimality). We obtain simpler expressions for the special no-feedback case, where the heuristic reduces to the classical $c \mu$ rule. Our analysis is based on comparing the expected cost of Klimov's ruleto the value of a strong linear programming (LP) relaxation of the system's region of achievable performance of mean queue lengths. In order to obtain this relaxation, we derive and exploit a new set ofwork decomposition laws for the parallel-server system. We further report on the results of a computational study on the quality of the $c \mu$ rule for parallel scheduling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We argue the importance both of developing simple sufficientconditions for the stability of general multiclass queueing networks and also of assessing such conditions under a range of assumptions on the weight of the traffic flowing between service stations. To achieve the former, we review a peak-rate stability condition and extend its range of application and for the latter, we introduce a generalisation of the Lu-Kumar network on which the stability condition may be tested for a range of traffic configurations. The peak-rate condition is close to exact when the between-station traffic is light, but degrades as this traffic increases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction. This paper studies the situation of research on Catalan literature between 1976 and 2003 by carrying out a bibliometric and social network analysis of PhD theses defended in Spain. It has a dual aim: to present interesting results for the discipline and to demonstrate the methodological efficacy of scientometric tools in the humanities, a field in which they are often neglected due to the difficulty of gathering data. Method. The analysis was performed on 151 records obtained from the TESEO database of PhD theses. The quantitative estimates include the use of the UCINET and Pajek software packages. Authority control was performed on the records. Analysis. Descriptive statistics were used to describe the sample and the distribution of responses to each question. Sex differences on key questions were analysed using the Chi-squared test. Results. The value of the figures obtained is demonstrated. The information obtained on the topic and the periods studied in the theses, and on the actors involved (doctoral students, thesis supervisors and members of defence committees), provide important insights into the mechanisms of humanities disciplines. The main research tendencies of Catalan literature are identified. It is observed that the composition of members of the thesis defence committees follows Lotka's Law. Conclusions. Bibliometric analysis and social network analysis may be especially useful in the humanities and in other fields which are lacking in scientometric data in comparison with the experimental sciences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Radioimmunotherapy Network (RIT-N) is a Web-based, international registry collecting long-term observational data about radioimmunotherapy-treated patients with malignant lymphoma outside randomized clinical studies. The RIT-N collects unbiased data on treatment indications, disease stages, patients' conditions, lymphoma subtypes, and hematologic side effects of radioimmunotherapy treatment. Methods: RIT-N is located at the University of Gottingen, Germany, and collected data from 14 countries. Data were entered by investigators into a Web-based central database managed by an independent clinical research organization. Results: Patients (1,075) were enrolled from December 2006 until November 2009, and 467 patients with an observation time of at least 12 mo were included in the following analysis. Diagnoses were as follows: 58% follicular lymphoma and 42% other B-cell lymphomas. The mean overall survival was 28 mo for follicular lymphoma and 26 mo for other lymphoma subtypes. Hematotoxicity was mild for hemoglobin (World Health Organization grade II), with a median nadir of 10 g/dL, but severe (World Health Organization grade III) for platelets and leukocytes, with a median nadir of 7,000/mu L and 2.2/mu L, respectively. Conclusion: Clinical usage of radioimmunotherapy differs from the labeled indications and can be assessed by this registry, enabling analyses of outcome and toxicity data beyond clinical trials. This analysis proves that radioimmunotherapy in follicular lymphoma and other lymphoma subtypes is a safe and efficient treatment option.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP)-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Researchers should continuously ask how to improve the models we rely on to make financial decisions in terms of the planning, design, construction, and maintenance of roadways. This project presents an alternative tool that will supplement local decision making but maintain a full appreciation of the complexity and sophistication of today’s regional model and local traffic impact study methodologies. This alternative method is tailored to the desires of local agencies, which requested a better, faster, and easier way to evaluate land uses and their impact on future traffic demands at the sub-area or project corridor levels. A particular emphasis was placed on scenario planning for currently undeveloped areas. The scenario planning tool was developed using actual land use and roadway information for the communities of Johnston and West Des Moines, Iowa. Both communities used the output from this process to make regular decisions regarding infrastructure investment, design, and land use planning. The City of Johnston case study included forecasting future traffic for the western portion of the city within a 2,600-acre area, which included 42 intersections. The City of West Des Moines case study included forecasting future traffic for the city’s western growth area covering over 30,000 acres and 331 intersections. Both studies included forecasting a.m. and p.m. peak-hour traffic volumes based upon a variety of different land use scenarios. The tool developed took goegraphic information system (GIS)-based parcel and roadway information, converted the data into a graphical spreadsheet tool, allowed the user to conduct trip generation, distribution, and assignment, and then to automatically convert the data into a Synchro roadway network which allows for capacity analysis and visualization. The operational delay outputs were converted back into a GIS thematic format for contrast and further scenario planning. This project has laid the groundwork for improving both planning and civil transportation decision making at the sub-regional, super-project level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AbstractBACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult.PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell.CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases.AVAILABILITY: The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download