970 resultados para mutant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A UV-induced mutation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) was characterized in the CHO clone A24. The asymmetric 4-banded zymogram and an in vitro GAPD activity equal to that of wild type cells were not consistent with models of a mutant heterozygote producing equal amounts of wild type and either catalytically active or inactive mutant subunits that interacted randomly. Cumulative evidence indicated that the site of the mutation was the GAPD structural locus expressed in CHO wild type cells, and that the mutant allele coded for a subunit that differed from the wild type subunit in stability and kinetics. The evidence included the appearance of a fifth band, the putative mutant homotetramer, after addition of the substrate glyceraldehyde-3-phosphate (GAP) to the gel matrix; dilution experiments indicating stability differences between the subunits; experiments with subsaturating levels of GAP indicating differences in affinity for the substrate; GAPD zymograms of A24 x mouse hybrids that were consistent with the presence of two distinct A24 subunits; independent segregation of A24 wild type and mutant electrophoretic bands from the hybrids, which was inconsistent with models of mutation of a locus involved in posttranslational modification; the mapping of both wild type and mutant forms of GAPD to chromosome 8; and the failure to detect any evidence of posttranslational modification (of other A24 isozymes, or through mixing of homogenates of A24 and mouse).^ The extent of skewing of the zymogram toward the wild type band, and the unreduced in vitro activity were inconsistent with models based solely on differences in activity of the two subunits. Comparison of wild type homotetramer bands in wild type cells and A24 suggested the latter had a preponderance of wild type subunits over mutant subunits, and had more GAPD tetramers than did CHO controls.^ Two CHO linkages, GAPD-triose phosphate isomerase, and acid phosphatase 2-adenosine deaminase were reported provisionally, and several others were confirmed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common pathological hallmark of most neurodegenerative disorders is the presence of protein aggregates in the brain. Understanding the regulation of aggregate formation is thus important for elucidating disease pathogenic mechanisms and finding effective preventive avenues and cures. Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a selective neurodegenerative disorder predominantly affecting motor neurons. The majority of ALS cases are sporadic, however, mutations in superoxide dismutase 1 (SOD1) are responsible for about 20% of familial ALS (fALS). Mutated SOD1 proteins are prone to misfold and form protein aggregates, thus representing a good candidate for studying aggregate formation. The long-term goal of this project is to identify regulators of aggregate formation by mutant SOD1 and other ALS-associated disease proteins. The specific aim of this thesis project is to assess the possibility of using the well-established Drosophila model system to study aggregation by human SOD1 (hSOD1) mutants. To this end, using wild type and the three mutant hSOD1 (A4V, G85R and G93A) most commonly found among fALS, I have generated 16 different SOD1 constructs containing either eGFP or mCherry in-frame fluorescent reporters, established and tested both cell- and animal-based Drosophila hSOD1 models. The experimental strategy allows for clear visualization of ectopic hSOD1 expression as well as versatile co-expression schemes to fully investigate protein aggregation specifically by mutant hSOD1. I have performed pilot cell-transfection experiments and verified induced expression of hSOD1 proteins. Using several tissue- or cell type-specific Gal4 lines, I have confirmed the proper expression of hSOD1 from established transgenic fly lines. Interestingly, in both Drosophila S2 cells and different fly tissues including the eye and motor neurons, robust aggregate formation by either wild type or mutant hSOD1 proteins was not observed. These preliminary observations suggest that Drosophila might not be a good experimental organism to study aggregation and toxicity of mutant hSOD1 protein. Nevertheless this preliminary conclusion implies the potential existence of a potent protective mechanism against mutant hSOD1 aggregation and toxicity in Drosophila. Thus, results from my SOD1-ALS project in Drosophila will help future studies on how to best employ this classic model organism to study ALS and other human brain degenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer death in both men and women in the United States and worldwide. Despite improvement in treatment strategies, the 5-year survival rate of lung cancer patients remains low. Thus, effective chemoprevention and treatment approaches are sorely needed. Mutations and activation of KRAS occur frequently in tobacco users and the early stage of development of non-small cell lung cancers (NSCLC). So they are thought to be the primary driver for lung carcinogenesis. My work showed that KRAS mutations and activations modulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors by up-regulating death receptors and down-regulating decoy receptors. In addition, we showed that KRAS suppresses cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) expression through activation of ERK/MAPK-mediated activation of c-MYC which means the mutant KRAS cells could be specifically targeted via TRAIL induced apoptosis. The expression level of Inhibitors of Apoptosis Proteins (IAPs) in mutant KRAS cells is usually high which could be overcome by the second mitochondria-derived activator of caspases (Smac) mimetic. So the combination of TRAIL and Smac mimetic induced the synthetic lethal reaction specifically in the mutant-KRAS cells but not in normal lung cells and wild-type KRAS lung cancer cells. Therefore, a synthetic lethal interaction among TRAIL, Smac mimetic and KRAS mutations could be used as an approach for chemoprevention and treatment of NSCLC with KRAS mutations. Further data in animal experiments showed that short-term, intermittent treatment with TRAIL and Smac mimetic induced apoptosis in mutant KRAS cells and reduced tumor burden in a KRAS-induced pre-malignancy model and mutant KRAS NSCLC xenograft models. These results show the great potential benefit of a selective therapeutic approach for the chemoprevention and treatment of NSCLC with KRAS mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the mouse, gamete recognition is mediated in part by the binding of sperm surface $\beta$1,4 galactosyltransferase (GalTase) to specific oligosaccharide residues on the zona pellucida ZP3. The expression of GalTase on the sperm surface is regulated by alleles within the distal segment of the T/t complex and results in a haploid-specific increase in GalTase expression on spermatids and sperm from t-bearing males, suggesting that differences in sperm GalTase activity may contribute to t-sperm transmission ratio distortion. In this study, the expression of GalTase RNA during wild-type and T/t-mutant spermatogenesis was characterized and the role of GalTase was analyzed in transmission ratio distortion. It was found that spermatogenic cells predominantly express the long form of the GalTase RNA, which encodes the GalTase protein that is preferentially targeted to the cell surface in somatic cells. In wild-type testes, GalTase RNA accumulates during the maturation of primary spermatocytes, reaches peak levels prior to meiosis, and decreases and meiosis. GalTase RNA accumulates to similar levels during the maturation of +/t and t/t primary spermatocytes, but unlike wild-type, the level of GalTase RNA in t-spermatocytes remains elevated during meiotic division. Consequently, spermatids in t-mutant testes inherit higher levels of GalTase RNA than do wild-type spermatids, which likely accounts for the haploid-specific increase in surface GalTase activity characteristic of spermatids from t-bearing mice.^ The functional significance of the increased GalTase activity during t-sperm transmission ratio distortion was determined by examining the distribution of GalTase RNA and surface GalTase protein in haploid spermatids from +/t males. Results show that +- and t-spermatids have similar levels of both GalTase RNA and protein, indicating that transmission ratio distortion in +/t mice is not likely due to haploid-specific differences in sperm surface GalTase activity.^ The presence of GalTase on the surface of an early spermatogenic cells before it is required on the mature sperm to perform its function during gamete binding suggests a separate function for GalTase in Sertoli-germ cell adhesion. Studies indicate that cell surface GalTase partly mediates the initial adhesion of pachytene spermatocytes, but not haploid spermatids, to Sertoli cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Retinoblastoma tumor suppressor gene (RB) plays a role in a variety of human cancers. Experimental analyses have indicated that the protein product of the RB gene (pRb) plays a role in cell cycle regulation, and that this protein is required in cellular differentiation, senescence, and cell survival. pRb function is dependent on its ability to bind to cellular factors. There are multiple protein binding domains within pRb. Mutations within these domains which eliminate the ability of pRb to bind its targets result in loss of function. Loss of pRb function leads to tumorigenesis, although uncontrolled cellular proliferation is not a universal response to pRb inactivation. The ultimate response to the loss of pRb is influenced by both the genetic and epigenetic environments. Targeted disruption of RB in mice results in embryonic lethality, demonstrating the requirement for functional pRb in development. Close examination of various tissues from the embryos which lack wildtype RB shows problems in differentiation as well as showing induction of apoptosis. Although disruption of RB has provided useful information, complete inactivation of a gene precludes the possibility of discovering the functions that separate domains may have within the system. Creation of a dominant negative mutant by domain deletion whose phenotype is expressed in the presence of the wildtype may provide information about the intermediate functions of the protein. In addition, tissue specific targeting of a dominant negative mutant of pRb allows for comprehensive analysis of pRb function in organogenesis. In this thesis, a series of RB deletion mutants were created and tested for dominant negative activity as well as cellular localization. A tissue culture assay for dominant negative activity was developed which screens for the phenotype of apoptosis due to loss of pRb function. Two mutants from this series scored positive for dominant negative activity in this assay. The effect of these mutants within the assay environment can be explained by a model in which pRb acts as a facilitator of cell fate pathway decisions. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-locus mutations in mice can express epileptic phenotypes and provide critical insights into the naturally occurring defects that alter excitability and mediate synchronization in the central nervous system (CNS). One such recessive mutation (on chromosome (Chr) 15), stargazer(stg/stg) expresses frequent bilateral 6-7 cycles per second (c/sec) spike-wave seizures associated with behavioral arrest, and provides a valuable opportunity to examine the inherited lesion associated with spike-wave synchronization.^ The existence of distinct and heterogeneous defects mediating spike-wave discharge (SWD) generation has been demonstrated by the presence of multiple genetic loci expressing generalized spike-wave activity and the differential effects of pharmacological agents on SWDs in different spike-wave epilepsy models. Attempts at understanding the different basic mechanisms underlying spike-wave synchronization have focused on $\gamma$-aminobutyric acid (GABA) receptor-, low threshold T-type Ca$\sp{2+}$ channel-, and N-methyl-D-aspartate receptor (NMDA-R)-mediated transmission. It is believed that defects in these modes of transmission can mediate the conversion of normal oscillations in a trisynaptic circuit, which includes the neocortex, reticular nucleus and thalamus, into spike-wave activity. However, the underlying lesions involved in spike-wave synchronization have not been clearly identified.^ The purpose of this research project was to locate and characterize a distinct neuronal hyperexcitability defect favoring spike-wave synchronization in the stargazer brain. One experimental approach for anatomically locating areas of synchronization and hyperexcitability involved an attempt to map patterns of hypersynchronous activity with antibodies to activity-induced proteins.^ A second approach to characterizing the neuronal defect involved examining the neuronal responses in the mutant following application of pharmacological agents with well known sites of action.^ In order to test the hypothesis that an NMDA receptor mediated hyperexcitability defect exists in stargazer neocortex, extracellular field recordings were used to examine the effects of CPP and MK-801 on coronal neocortical brain slices of stargazer and wild type perfused with 0 Mg$\sp{2+}$ artificial cerebral spinal fluid (aCSF).^ To study how NMDA receptor antagonists might promote increased excitability in stargazer neocortex, two basic hypotheses were tested: (1) NMDA receptor antagonists directly activate deep layer principal pyramidal cells in the neocortex of stargazer, presumably by opening NMDA receptor channels altered by the stg mutation; and (2) NMDA receptor antagonists disinhibit the neocortical network by blocking recurrent excitatory synaptic inputs onto inhibitory interneurons in the deep layers of stargazer neocortex.^ In order to test whether CPP might disinhibit the 0 Mg$\sp{2+}$ bursting network in the mutant by acting on inhibitory interneurons, the inhibitory inputs were pharmacologically removed by application of GABA receptor antagonists to the cortical network, and the effects of CPP under 0 Mg$\sp{2+}$aCSF perfusion in layer V of stg/stg were then compared with those found in +/+ neocortex using in vitro extracellular field recordings. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the p53 tumor suppressor gene are found in over 50% of human tumors and in the germline of Li-Fraumeni syndrome families. About 80% of these mutations are missense in nature. In order to study how p53 missense mutations affect tumorigenesis in vivo, we focused on the murine p53 arg-to-his mutation at amino acid 172, which corresponds to the human hot spot mutation at amino acid 175. The double replacement procedure was employed to introduce the p53 R172H mutation into the p53 locus of ES cells and mice were generated. An additional 1bp deletion in the intron 2 splice acceptor site was detected in the same allele in mice. We named this allele p53R172HΔg. This allele makes a small amount of full length p53 mutant protein. ^ Spontaneous tumor formation and survival were studied in these mice. Mice heterozygous for the p53R172HΔg allele showed 50% survival at 17 months of age, similar to the p53+/− mice. Moreover, the p53R172HΔg/+ mice showed a distinct tumor spectrum: 55% sarcomas, including osteosarcoms, fibrosarcomas and angiosarcomas; 27% carcinomas, including lung adenocarcinomas, squamous cell carcinomas, hepatocellular carcinomas and islet cell carcinomas; and 18% lymphomas. Compared to the p53+/− mice, there was a clear increase in the frequency of carcinoma development and a decrease in lymphoma incidence. Among the sarcomas that developed, fibrosarcomas in the skin were also more frequently observed. More importantly, osteosarcomas and carinomas that developed in the p53R172HΔg/+ mice metastasized at very high frequency (64% and 67%, respectively) compared with less than 10% in the p53+/− mice. The metastatic lesions were usually found in lung and liver, and less frequently in other tissues. The altered tumor spectrum in the mice and increased metastatic potential of the tumors suggested that the p53R172H mutation represents a gain-of-function. ^ Mouse embryonic fibroblasts (MEFs) from the mice homozygous and heterozygous for the p53R172HΔg allele were studied for growth characteristics, immortalization potential and genomic instability. All of the p53R172HΔg /+ MEF lines are immortalized under a 3T3 protocol while under the same protocol p53+/− MEFs are not immortalized. Karyotype analysis showed a persistent appearance of chromosome end-to-end fusion in the MEFs both homozygous and heterozygous for the p53R172HΔg allele. These observations suggest that increased genomic instability in the cells may cause the altered tumor phenotypes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, treatment of food allergy only considered the avoidance of the specific food. However, the possibility of cross-reactivity makes this practice not very effective. Immunotherapy may exhibit as a good alternative to food allergy treatment. The use of hypoallergenic molecules with reduced IgE binding capacity but with ability to stimulate the immune system is a promising tool which could be developed for immunotherapy. In this study, three mutants of Pru p 3, the principal allergen of peach, were produced based on the described mimotope and T cell epitopes, by changing the specific residues to alanine, named as Pru p 3.01, Pru p 3.02, and Pru p 3.03. Pru p 3.01 showed very similar allergenic activity as the wild type by in vitro assays. However, Pru p 3.02 and Pru p 3.03 presented reduced IgE binding with respect to the native form, by in vitro, ex vivo, and in vivo assays. In addition, Pru p 3.03 had affected the IgG4 binding capacity and presented a random circular dichroism, which was reflected in the nonrecognition by specific antibodies anti-Pru p 3. Nevertheless, both Pru p 3.02 and Pru p 3.03 maintained the binding to IgG1 and their ability to activate T lymphocytes. Thus, Pru p 3.02 and Pru p 3.03 could be good candidates for potential immunotherapy in peach-allergic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycolic acids are a major constituent of the mycobacterial cell wall, and they form an effective permeability barrier to protect mycobacteria from antimicrobial agents. Although the chemical structures of mycolic acids are well established, little is known on their biosynthesis. We have isolated a mycolate-deficient mutant strain of Mycobacterium smegmatis mc2-155 by chemical mutagenesis followed by screening for increased sensitivity to novobiocin. This mutant also was hypersensitive to other hydrophobic compounds such as crystal violet, rifampicin, and erythromycin. Entry of hydrophobic probes into mutant cells occurred much more rapidly than that into the wild-type cells. HPLC and TLC analysis of fatty acid composition after saponification showed that the mutant failed to synthesize full-length mycolic acids. Instead, it accumulated a series of long-chain fatty acids, which were not detected in the wild-type strain. Analysis by 1H NMR, electrospray and electron impact mass spectroscopy, and permanganate cleavage of double bonds showed that these compounds corresponded to the incomplete meromycolate chain of mycolic acids, except for the presence of a β-hydroxyl group. This direct identification of meromycolates as precursors of mycolic acids provides a strong support for the previously proposed pathway for mycolic acid biosynthesis involving the separate synthesis of meromycolate chain and the α-branch of mycolic acids, followed by the joining of these two branches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy (NALD), are autosomal recessive diseases caused by defects in peroxisome assembly, for which at least 10 complementation groups have been reported. We have isolated a human PEX1 cDNA (HsPEX1) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary (CHO) cell line, ZP107, transformed with peroxisome targeting signal type 1-tagged “enhanced” green fluorescent protein. This cDNA encodes a hydrophilic protein (Pex1p) comprising 1,283 amino acids, with high homology to the AAA-type ATPase family. A stable transformant of ZP107 with HsPEX1 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX1 expression restored peroxisomal protein import in fibroblasts from three patients with ZS and NALD of complementation group I (CG-I), which is the highest-incidence PBD. A CG-I ZS patient (PBDE-04) possessed compound heterozygous, inactivating mutations: a missense point mutation resulting in Leu-664 → Pro and a deletion of the sequence from Gly-634 to His-690 presumably caused by missplicing (splice site mutation). Both PBDE-04 PEX1 cDNAs were defective in peroxisome-restoring activity when expressed in the patient fibroblasts as well as in ZP107 cells. These results demonstrate that PEX1 is the causative gene for CG-I peroxisomal disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 3A4 is generally considered to be the most important human drug-metabolizing enzyme and is known to catalyze the oxidation of a number of substrates in a cooperative manner. An allosteric mechanism is usually invoked to explain the cooperativity. Based on a structure–activity study from another laboratory using various effector–substrate combinations and on our own studies using site-directed mutagenesis and computer modeling of P450 3A4, the most likely location of effector binding is in the active site along with the substrate. Our study was designed to test this hypothesis by replacing residues Leu-211 and Asp-214 with the larger Phe and Glu, respectively. These residues were predicted to constitute a portion of the effector binding site, and the substitutions were designed to mimic the action of the effector by reducing the size of the active site. The L211F/D214E double mutant displayed an increased rate of testosterone and progesterone 6β-hydroxylation at low substrate concentrations and a decreased level of heterotropic stimulation elicited by α-naphthoflavone. Kinetic analyses of the double mutant revealed the absence of homotropic cooperativity with either steroid substrate. At low substrate concentrations the steroid 6β-hydroxylase activity of the wild-type enzyme was stimulated by a second steroid, whereas L211F/D214E displayed simple substrate inhibition. To analyze L211F/D214E at a more mechanistic level, spectral binding studies were carried out. Testosterone binding by the wild-type enzyme displayed homotropic cooperativity, whereas substrate binding by L211F/D214E displayed hyperbolic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the gene encoding rhodopsin, the visual pigment in rod photoreceptors, lead to retinal degeneration in species from Drosophila to man. The pathogenic sequence from rod cell-specific mutation to degeneration of rods and cones remains unclear. To understand the disease process in man, we studied heterozygotes with 18 different rhodopsin gene mutations by using noninvasive tests of rod and cone function and retinal histopathology. Two classes of disease expression were found, and there was allele-specificity. Class A mutants lead to severely abnormal rod function across the retina early in life; topography of residual cone function parallels cone cell density. Class B mutants are compatible with normal rods in adult life in some retinal regions or throughout the retina, and there is a slow stereotypical disease sequence. Disease manifests as a loss of rod photoreceptor outer segments, not singly but in microscopic patches that coalesce into larger irregular areas of degeneration. Cone outer segment function remains normal until >75% of rod outer segments are lost. The topography of cone loss coincides with that of rod loss. Most class B mutants show an inferior-nasal to superior-temporal retinal gradient of disease vulnerability associated with visual cycle abnormalities. Class A mutant alleles behave as if cytotoxic; class B mutants can be relatively innocuous and epigenetic factors may play a major role in the retinal degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell death response known as the hypersensitive response (HR) is a central feature of gene-for-gene plant disease resistance. A mutant line of Arabidopsis thaliana was identified in which effective gene-for-gene resistance occurs despite the virtual absence of HR cell death. Plants mutated at the DND1 locus are defective in HR cell death but retain characteristic responses to avirulent Pseudomonas syringae such as induction of pathogenesis-related gene expression and strong restriction of pathogen growth. Mutant dnd1 plants also exhibit enhanced resistance against a broad spectrum of virulent fungal, bacterial, and viral pathogens. The resistance against virulent pathogens in dnd1 plants is quantitatively less strong and is differentiable from the gene-for-gene resistance mediated by resistance genes RPS2 and RPM1. Levels of salicylic acid compounds and mRNAs for pathogenesis-related genes are elevated constitutively in dnd1 plants. This constitutive induction of systemic acquired resistance may substitute for HR cell death in potentiating the stronger gene-for-gene defense response. Although cell death may contribute to defense signal transduction in wild-type plants, the dnd1 mutant demonstrates that strong restriction of pathogen growth can occur in the absence of extensive HR cell death in the gene-for-gene resistance response of Arabidopsis against P. syringae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A CHO-K1 cell mutant with a specific decrease in cellular phosphatidylethanolamine (PE) level was isolated as a variant resistant to Ro09–0198, a PE-directed antibiotic peptide. The mutant was defective in the phosphatidylserine (PS) decarboxylation pathway for PE formation, in which PS produced in the endoplasmic reticulum is transported to mitochondria and then decarboxylated by an inner mitochondrial membrane enzyme, PS decarboxylase. Neither PS formation nor PS decarboxylase activity was reduced in the mutant, implying that the mutant is defective in some step of PS transport. The transport processes of phospholipids between the outer and inner mitochondrial membrane were analyzed by use of isolated mitochondria and two fluorescence-labeled phospholipid analogs, 1-palmitoyl-2-{N-[6(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]caproyl}-PS (C6-NBD-PS) and C6-NBD-phosphatidylcholine (C6-NBD-PC). On incubation with the CHO-K1 mitochondria, C6-NBD-PS was readily decarboxylated to C6-NBD-PE, suggesting that the PS analog was partitioned into the outer leaflet of mitochondria and then translocated to the inner mitochondrial membrane. The rate of decarboxylation of C6-NBD-PS in the mutant mitochondria was reduced to ≈40% of that in the CHO-K1 mitochondria. The quantity of phospholipid analogs translocated from the outer leaflet of mitochondria into inner mitochondrial membranes was further examined by selective extraction of the analogs from the outer leaflet of mitochondria. In the mutant mitochondria, the translocation of C6-NBD-PS was significantly reduced, whereas the translocation of C6-NBD-PC was not affected. These results indicate that the mutant is defective in PS transport between the outer and inner mitochondrial membrane and provide genetic evidence for the existence of a specific mechanism for intramitochondrial transport of PS.