874 resultados para multiobjective combinatorial optimization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Safe operation of unmanned aerial vehicles (UAVs) over populated areas requires reducing the risk posed by a UAV if it crashed during its operation. We considered several types of UAV risk-based path planning problems and developed techniques for estimating the risk to third parties on the ground. The path planning problem requires making trade-offs between risk and flight time. Four optimization approaches for solving the problem were tested; a network-based approach that used a greedy algorithm to improve the original solution generated the best solutions with the least computational effort. Additionally, an approach for solving a combined design and path planning problems was developed and tested. This approach was extended to solve robust risk-based path planning problem in which uncertainty about wind conditions would affect the risk posed by a UAV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The roots of swarm intelligence are deeply embedded in the biological study of self-organized behaviors in social insects. Particle swarm optimization (PSO) is one of the modern metaheuristics of swarm intelligence, which can be effectively used to solve nonlinear and non-continuous optimization problems. The basic principle of PSO algorithm is formed on the assumption that potential solutions (particles) will be flown through hyperspace with acceleration towards more optimum solutions. Each particle adjusts its flying according to the flying experiences of both itself and its companions using equations of position and velocity. During the process, the coordinates in hyperspace associated with its previous best fitness solution and the overall best value attained so far by other particles within the group are kept track and recorded in the memory. In recent years, PSO approaches have been successfully implemented to different problem domains with multiple objectives. In this paper, a multiobjective PSO approach, based on concepts of Pareto optimality, dominance, archiving external with elite particles and truncated Cauchy distribution, is proposed and applied in the design with the constraints presence of a brushless DC (Direct Current) wheel motor. Promising results in terms of convergence and spacing performance metrics indicate that the proposed multiobjective PSO scheme is capable of producing good solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimal design of laminated sandwich panels with viscoelastic core is addressed in this paper, with the objective of simultaneously minimizing weight and material cost and maximizing modal damping. The design variables are the number of layers in the laminated sandwich panel, the layer constituent materials and orientation angles and the viscoelastic layer thickness. The problem is solved using the Direct MultiSearch (DMS) solver for multiobjective optimization problems which does not use any derivatives of the objective functions. A finite element model for sandwich plates with transversely compressible viscoelastic core and anisotropic laminated face layers is used. Trade-off Pareto optimal fronts are obtained and the results are analyzed and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural selection favors the survival and reproduction of organisms that are best adapted to their environment. Selection mechanism in evolutionary algorithms mimics this process, aiming to create environmental conditions in which artificial organisms could evolve solving the problem at hand. This paper proposes a new selection scheme for evolutionary multiobjective optimization. The similarity measure that defines the concept of the neighborhood is a key feature of the proposed selection. Contrary to commonly used approaches, usually defined on the basis of distances between either individuals or weight vectors, it is suggested to consider the similarity and neighborhood based on the angle between individuals in the objective space. The smaller the angle, the more similar individuals. This notion is exploited during the mating and environmental selections. The convergence is ensured by minimizing distances from individuals to a reference point, whereas the diversity is preserved by maximizing angles between neighboring individuals. Experimental results reveal a highly competitive performance and useful characteristics of the proposed selection. Its strong diversity preserving ability allows to produce a significantly better performance on some problems when compared with stat-of-the-art algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les cellules CD8? T cytolytiques (CTL) sont les principaux effecteurs du système immunitaire adaptatif contre les infections et les tumeurs. La récente identification d?antigènes tumoraux humains reconnus par des cellules T cytolytiques est la base pour le, développement des vaccins antigène spécifiques contre le cancer. Le nombre d?antigènes tumoraux reconnus par des CTL que puisse être utilisé comme cible pour la vaccination des patients atteints du cancer est encore limité. Une nouvelle technique, simple et rapide, vient d?être proposée pour l?identification d?antigènes reconnus par des CTL. Elle se base sur l?utilisation de librairies combinatoriales de peptides arrangées en un format de "scanning" ou balayage par position (PS-SCL). La première partie de cette étude a consisté à valider cette nouvelle technique par une analyse détaillée de la reconnaissance des PS-SCL par différents clones de CTL spécifiques pour des antigènes associés à la tumeur (TAA) connus ainsi que par des clones de spécificité inconnue. Les résultats de ces analyses révèlent que pour tous les clones, la plupart des acides aminés qui composent la séquence du peptide antigénique naturel ont été identifiés par l?utilisation des PS-SCL. Les résultats obtenus ont permis d?identifier des peptides analogues ayant une antigènicité augmentée par rapport au peptide naturel, ainsi que des peptides comportant de multiples modifications de séquence, mais présentant la même réactivité que le peptide naturel. La deuxième partie de cette étude a consisté à effectuer des analyses biométriques des résultats complexes générés par la PS-SCL. Cette approche a permis l?identification des séquences correspondant aux épitopes naturels à partir de bases de données de peptides publiques. Parmi des milliers de peptides, les séquences naturelles se trouvent comprises dans les 30 séquences ayant les scores potentiels de stimulation les plus élevés pour chaque TAA étudié. Mais plus important encore, l?utilisation des PS-SCL avec un clone réactif contre des cellules tumorales mais de spécificité inconnue nous a permis d?identifier I?epitope reconnu par ce clone. Les données présentées ici encouragent l?utilisation des PS-SCL pour l?identification et l?optimisation d?épitopes pour des CTL réactifs anti-tumoraux, ainsi que pour l?étude de la reconnaissance dégénérée d?antigènes par les CTL.<br/><br/>CD8+ cytolytic T lymphocytes (CTL) are the main effector cells of the adaptive immune system against infection and tumors. The recent identification of moleculariy defined human tumor Ags recognized by autologous CTL has opened new opportunities for the development of Ag-specific cancer vaccines. Despite extensive work, however, the number of CTL-defined tumor Ags that are suitable targets for the vaccination of cancer patients is still limited, especially because of the laborious and time consuming nature of the procedures currentiy used for their identification. The use of combinatorial peptide libraries in positionai scanning format (Positional Scanning Synthetic Combinatorial Libraries, PS-SCL)' has recently been proposed as an alternative approach for the identification of these epitopes. To validate this approach, we analyzed in detail the recognition of PS-SCL by tumor-reactive CTL clones specific for multiple well-defined tumor-associated Ags (TAA) as well as by tumor-reactive CTL clones of unknown specificity. The results of these analyses revealed that for all the TAA-specific clones studied most of the amino acids composing the native antigenic peptide sequences could be identified through the use of PS-SCL. Based on the data obtained from the screening of PS-SCL, we could design peptide analogs of increased antigenicity as well as cross-reactive analog peptides containing multiple amino acid substitutions. In addition, the resuits of PS-SCL-screening combined with a recently developed biometric data analysis (PS-SCL-based biometric database analysis) allowed the identification of the native peptides in public protein databases among the 30 most active sequences, and this was the case for all the TAA studied. More importantiy, the screening of PS- SCL with a tumor-reactive CTL clone of unknown specificity resulted in the identification of the actual epitope. Overall, these data encourage the use of PS-SCL not oniy for the identification and optimization of tumor-associated CTL epitopes, but also for the analysis of degeneracy in T lymphocyte receptor (TCR) recognition of tumor Ags.<br/><br/>Les cellules T CD8? cytolytiques font partie des globules blancs du sang et sont les principales responsables de la lutte contre les infections et les tumeurs. Les immunologistes cherchent depuis des années à identifier des molécules exprimées et présentées à la surface des tumeurs qui puissent être reconnues par des cellules T CD8? cytolytiques capables ensuite de tuer ces tumeurs de façon spécifique. Ce type de molécules représente la base pour le développement de vaccins contre le cancer puisqu?elles pourraient être injectées aux patients afin d?induire une réponse anti- tumorale. A présent, il y a très peu de molécules capables de stimuler le système immunitaire contre les tumeurs qui sont connues parce que les techniques développées à ce jour pour leur identification sont complexes et longues. Une nouvelle technique vient d?être proposée pour l?identification de ce type de molécules qui se base sur l?utilisation de librairies de peptides. Ces librairies représentent toutes les combinaisons possibles des composants de base des molécules recherchées. La première partie de cette étude a consisté à valider cette nouvelle technique en utilisant des cellules T CD8? cytolytiques capables de tuer des cellules tumorales en reconnaissant une molécule connue présente à leur surface. On a démontré que l?utilisation des librairies permet d?identifier la plupart des composants de base de la molécule reconnue par les cellules T CD8? cytolytiques utilisées. La deuxième partie de cette étude a consisté à effectuer une recherche des molécules potentiellement actives dans des protéines présentes dans des bases des données en utilisant un programme informatique qui permet de classer les molécules sur la base de leur activité biologique. Parmi des milliers de molécules de la base de données, celles reconnues par nos cellules T CD8? cytolytiques ont été trouvées parmi les plus actives. Plus intéressant encore, la combinaison de ces deux techniques nous a permis d?identifier la molécule reconnue par une population de cellules T CD8? cytolytiques ayant une activité anti-tumorale, mais pour laquelle on ne connaissait pas la spécificité. Nos résultats encouragent l?utilisation des librairies pour trouver et optimiser des molécules reconnues spécifiquement par des cellules T CD8? cytolytiques capables de tuer des tumeurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studies the use of heuristic algorithms in a number of combinatorial problems that occur in various resource constrained environments. Such problems occur, for example, in manufacturing, where a restricted number of resources (tools, machines, feeder slots) are needed to perform some operations. Many of these problems turn out to be computationally intractable, and heuristic algorithms are used to provide efficient, yet sub-optimal solutions. The main goal of the present study is to build upon existing methods to create new heuristics that provide improved solutions for some of these problems. All of these problems occur in practice, and one of the motivations of our study was the request for improvements from industrial sources. We approach three different resource constrained problems. The first is the tool switching and loading problem, and occurs especially in the assembly of printed circuit boards. This problem has to be solved when an efficient, yet small primary storage is used to access resources (tools) from a less efficient (but unlimited) secondary storage area. We study various forms of the problem and provide improved heuristics for its solution. Second, the nozzle assignment problem is concerned with selecting a suitable set of vacuum nozzles for the arms of a robotic assembly machine. It turns out that this is a specialized formulation of the MINMAX resource allocation formulation of the apportionment problem and it can be solved efficiently and optimally. We construct an exact algorithm specialized for the nozzle selection and provide a proof of its optimality. Third, the problem of feeder assignment and component tape construction occurs when electronic components are inserted and certain component types cause tape movement delays that can significantly impact the efficiency of printed circuit board assembly. Here, careful selection of component slots in the feeder improves the tape movement speed. We provide a formal proof that this problem is of the same complexity as the turnpike problem (a well studied geometric optimization problem), and provide a heuristic algorithm for this problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decade has shown that the global paper industry needs new processes and products in order to reassert its position in the industry. As the paper markets in Western Europe and North America have stabilized, the competition has tightened. Along with the development of more cost-effective processes and products, new process design methods are also required to break the old molds and create new ideas. This thesis discusses the development of a process design methodology based on simulation and optimization methods. A bi-level optimization problem and a solution procedure for it are formulated and illustrated. Computational models and simulation are used to illustrate the phenomena inside a real process and mathematical optimization is exploited to find out the best process structures and control principles for the process. Dynamic process models are used inside the bi-level optimization problem, which is assumed to be dynamic and multiobjective due to the nature of papermaking processes. The numerical experiments show that the bi-level optimization approach is useful for different kinds of problems related to process design and optimization. Here, the design methodology is applied to a constrained process area of a papermaking line. However, the same methodology is applicable to all types of industrial processes, e.g., the design of biorefiners, because the methodology is totally generalized and can be easily modified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach to the solution of moving a robot manipulator with minimum cost along a specified geometric path in the presence of obstacles. The main idea is to express obstacle avoidance in terms of the distances between potentially colliding parts. The optimal traveling time and the minimum mechanical energy of the actuators are considered together to build a multiobjective function. A simple numerical example involving a Cartesian manipulator arm with two-degree-of-freedom is described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections.