885 resultados para multi-agent incremental negotiation scheme
Resumo:
Despite several examples of deployed agent systems, there remain barriers to the large-scale adoption of agent technologies. In order to understand these barriers, this paper considers aspects of marketing theory which deal with diffusion of innovations and their relevance to the agents domain and the current state of diffusion of agent technologies. In particular, the paper examines the role of standards in the adoption of new technologies, describes the agent standards landscape, and compares the development and diffusion of agent technologies with that of object-oriented programming. The paper also reports on a simulation model developed in order to consider different trajectories for the adoption of agent technologies, with trajectories based on various assumptions regarding industry structure and the existence of competing technology standards. We present details of the simulation model and its assumptions, along with the results of the simulation exercises.
Resumo:
This work proposes an animated pedagogical agent that has the role of providing emotional support to the student: motivating and encouraging him, making him believe in his self-ability, and promoting a positive mood in him, which fosters learning. This careful support of the agent, its affective tactics, is expressed through emotional behaviour and encouragement messages of the lifelike character. Due to human social tendency of anthropomorphising software, we believe that a software agent can accomplish this affective role. In order to choose the adequate affective tactics, the agent should also know the student’s emotions. The proposed agent recognises the student’s emotions: joy/distress, satisfaction/disappointment, anger/gratitude, and shame, from the student’s observable behaviour, i. e. his actions in the interface of the educational system. The inference of emotions is psychologically grounded on the cognitive theory of emotions. More specifically, we use the OCC model which is based on the cognitive approach of emotion and can be computationally implemented. Due to the dynamic nature of the student’s affective information, we adopted a BDI approach to implement the affective user model and the affective diagnosis. Besides, in our work we profit from the reasoning capacity of the BDI approach in order for the agent to deduce the student’s appraisal, which allows it to infer the student’s emotions. As a case study, the proposed agent is implemented as the Mediating Agent of MACES: an educational collaborative environment modelled as a multi-agent system and pedagogically based on the sociocultural theory of Vygotsky.
Resumo:
We propose a new paradigm for collective learning in multi-agent systems (MAS) as a solution to the problem in which several agents acting over the same environment must learn how to perform tasks, simultaneously, based on feedbacks given by each one of the other agents. We introduce the proposed paradigm in the form of a reinforcement learning algorithm, nominating it as reinforcement learning with influence values. While learning by rewards, each agent evaluates the relation between the current state and/or action executed at this state (actual believe) together with the reward obtained after all agents that are interacting perform their actions. The reward is a result of the interference of others. The agent considers the opinions of all its colleagues in order to attempt to change the values of its states and/or actions. The idea is that the system, as a whole, must reach an equilibrium, where all agents get satisfied with the obtained results. This means that the values of the state/actions pairs match the reward obtained by each agent. This dynamical way of setting the values for states and/or actions makes this new reinforcement learning paradigm the first to include, naturally, the fact that the presence of other agents in the environment turns it a dynamical model. As a direct result, we implicitly include the internal state, the actions and the rewards obtained by all the other agents in the internal state of each agent. This makes our proposal the first complete solution to the conceptual problem that rises when applying reinforcement learning in multi-agent systems, which is caused by the difference existent between the environment and agent models. With basis on the proposed model, we create the IVQ-learning algorithm that is exhaustive tested in repetitive games with two, three and four agents and in stochastic games that need cooperation and in games that need collaboration. This algorithm shows to be a good option for obtaining solutions that guarantee convergence to the Nash optimum equilibrium in cooperative problems. Experiments performed clear shows that the proposed paradigm is theoretical and experimentally superior to the traditional approaches. Yet, with the creation of this new paradigm the set of reinforcement learning applications in MAS grows up. That is, besides the possibility of applying the algorithm in traditional learning problems in MAS, as for example coordination of tasks in multi-robot systems, it is possible to apply reinforcement learning in problems that are essentially collaborative
Resumo:
The use of multi-agent systems for classification tasks has been proposed in order to overcome some drawbacks of multi-classifier systems and, as a consequence, to improve performance of such systems. As a result, the NeurAge system was proposed. This system is composed by several neural agents which communicate and negotiate a common result for the testing patterns. In the NeurAge system, a negotiation method is very important to the overall performance of the system since the agents need to reach and agreement about a problem when there is a conflict among the agents. This thesis presents an extensive analysis of the NeurAge System where it is used all kind of classifiers. This systems is now named ClassAge System. It is aimed to analyze the reaction of this system to some modifications in its topology and configuration
Resumo:
This paper presents a multi-agent system for real-time operation of simulated microgrid using the Smart-Grid Test Bed at Washington State University. The multi-agent system (MAS) was developed in JADE (Java Agent DEvelopment Framework) which is a Foundation for Intelligent Physical Agents (FIPA) compliant open source multi-agent platform. The proposed operational strategy is mainly focused on using an appropriate energy management and control strategies to improve the operation of an islanded microgrid, formed by photovoltaic (PV) solar energy, batteries and resistive and rotating machines loads. The focus is on resource management and to avoid impact on loads from abrupt variations or interruption that changes the operating conditions. The management and control of the PV system is performed in JADE, while the microgrid model is simulated in RSCAD/RTDS (Real-Time Digital Simulator). Finally, the outcome of simulation studies demonstrated the feasibility of the proposed multi-agent approach for real-time operation of a microgrid.
Resumo:
Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.
Resumo:
Negli ultimi anni le tecnologie informatiche sono state al centro di uno sviluppo esponenziale. Fra le incalcolabili innovazioni presentate, ha preso sempre più campo il paradigma per la programmazione ad agenti, che permette la realizzazione di sistemi software complessi, i quali, nell'informatica moderna, ricoprono un ruolo di fondamentale importanza. Questi sistemi, denominati autonomi, mostrano caratteristiche interessanti per scenari dinamici; essi infatti devono essere robusti e resistenti, in grado di adattarsi al contesto ambientale e quindi reagire a determinate modifiche che si verificano nell'ambiente, comportandosi di conseguenza. Indicano perciò la pro-attività dell'entità presa in considerazione. In questa tesi saranno spiegate queste tipologie di sistemi, introdotte le loro caratteristiche e mostrate le loro potenzialità. Tali caratteristiche permettono di responsabilizzare i soggetti, rendendo il sistema auto-organizzato, con una migliore scalabilità e modularità, riducendo quindi le elevate esigenze di calcolo. L'organizzazione di questo documento prevede i primi capitoli atti a introdurre il mondo dei sistemi autonomi, partendo dalle definizioni di autonomia e di agenti software, concludendo con i sistemi multi-agenti, allo scopo di permettere al lettore una comprensione adatta ed esaustiva. I successivi capitoli riguardano le fasi di progettazione delle entità prese in esame, le loro forme di standardizzazione e i modelli che possono adottare, tra i quali il più conosciuto, il modello BDI. Ne seguono due diverse metodologie per l'ingegneria del software orientata agli agenti. Si conclude con la presentazione dello stato dell'arte degli ambienti di sviluppo conosciuti, contenente un'esauriente introduzione ad ognuno di essi ed una visione nel mondo del lavoro del loro apporto negli applicativi in commercio. Infine la tesi terminerà con un capitolo di conclusioni e di riflessioni sui possibili aspetti futuri.
Resumo:
One major problem of concurrent multi-path transfer (CMT) scheme in multi-homed mobile networks is that the utilization of different paths with diverse delays may cause packet reordering among packets of the same ?ow. In the case of TCP-like, the reordering exacerbates the problem by bringing more timeouts and unnecessary retransmissions, which eventually degrades the throughput of connections considerably. To address this issue, we ?rst propose an Out-of-order Scheduling for In-order Arriving (OSIA), which exploits the sending time discrepancy to preserve the in-order packet arrival. Then, we formulate the optimal traf?c scheduling as a constrained optimization problem and derive its closedform solution by our proposed progressive water-?lling solution. We also present an implementation to enforce the optimal scheduling scheme using cascaded leaky buckets with multiple faucets, which provides simple guidelines on maximizing the utilization of aggregate bandwidth while decreasing the probability of triggering 3 dupACKs. Compared with previous work, the proposed scheme has lower computation complexity and can also provide the possibility for dynamic network adaptability and ?ner-grain load balancing. Simulation results show that our scheme signi?cantly alleviates reordering and enhances transmission performance.