916 resultados para movement patterns


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Asian elephant's foraging strategy in its natural habitat and in cultivation was studied in southern India during 1981-83. Though elephants consumed at least 112 plant species in the study area, about 85% of their diet consisted of only 25 species from the order Malvales and the families Leguminosae, Palmae, Cyperaceae and Gramineae. Alteration between a predominantly browse diet during the dry season with a grass diet during the early wet season was related to the seasonally changing protein content of grasses. Crop raiding, which was sporadic during the dry season, gradually increased with more area being cultivated with the onset of rains. Raiding frequency reached a peak during October-December, with some villages being raided almost every night, when finger millet (Eleusine coracana) was cultivated by most farmers. The monthly frequency of raiding was related to the seasonal movement of elephant herds and to the size of the enclave. Of their total annual food requirement, adult bull elephants derived an estimated 9.3% and family herds 1.7% in quantity from cultivated land. Cultivated cereal and millet crops provided significantly more protein, calcium and sodium than the wild grasses. Ultimately, crop raiding can be thought of as an extension of the elephant's optimal foraging strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a flume experiment of flow and sediment movement in a cavity. The flow velocity, sediment concentration and the mechanism of hydraulic sorting in the circulation flow are discussed. The quantity and patterns of sediment deposition in the circulation area are studied as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirty largemouth bass ( Micropterus salmoide s Lacepde) were implanted with radio tags in late October 2003 in two coves of Lake Seminole, Georgia, and tracked over a 24-hour period about every 10 days to determine their response to herbicide application. After five weeks of tracking, hydrilla ( Hydrilla verticillata Royle) in each cove was treated in early December 2003 with dipotassium salt of endothall (Aquathol K; 7-oxabicyclo [2.2.1] heptane-2,3-dicarboxylic acid) at a rate of 3.5 ppm. Largemouth bass were tracked during application and tracking continued for three months post treatment to assess effects of herbicide treatment on activity patterns. The treatment in Desser Cove successfully reduced hydrilla in approximately half the cove. However, the treatment in Peacock Lake completely eliminated all submersed aquatic vegetation (SAV) by April 2004. Movement and activity centers remained similar between treatment periods in Desser Cove, but increased after treatment in Peacock Lake. Depth occupied by telemetered fish decreased after Aquathol K treatment in both coves. In general, behavior of largemouth bass did not change appreciably during treatment, and only minor changes were observed in the posttreatment period in Peacock Lake, where all SAV was eliminated. Fish showed little attraction to or movement away from treatment areas, and fish migration from either cove was nil after treatment. Application of Aquathol K and subsequent reduction of SAV had little effect on largemouth bass behavior or movement. (PDF has 8 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The largely sedentary behavior of many fishes on coral reefs is well established. Information on the movement behavior of individual fish, over fine temporal and spatial scales, however, continues to be limited. It is precisely this type of information that is critical for evaluating the success of marine reserves designed for the conservation and/or management of vagile fishes. In this pilot study we surgically-tagged eight hogfish (Lachnolaimus maximus Walbaum 1792) with coded-acoustic transmitters inside the Conch Reef Research Only Area (a no-take marine reserve) in the northern Florida Keys National Marine Sanctuary. Our primary objective was to characterize the movement of L. maximus across Conch Reef in the vicinity of the reserve. All fish were captured, surgically-tagged and released in situ during a saturation mission to the Aquarius Undersea Laboratory, which is located in the center of the reserve. Movement of tagged L. maximus was recorded for up to 95 days by three acoustic receivers deployed on the seafloor. Results showed clear diel patterns in L. maximus activity and regular movement among the receivers was recorded for seven of the eight tagged fish. Fidelity of tagged fish to the area of release was high when calculated at the scale of days, while within-day fidelity was comparatively low when calculated at the scale of hours. While the number of fish departures from the array also varied, the majority of departures for seven of the eight fish did not exceed 1-hr (with the exception of one 47-day departure), suggesting that when departures occurred, the fish did not travel far. Future efforts will significantly expand the number of receivers at Conch Reef such that fish movement behavior relative to the reserve boundaries can be quantified with increased temporal and spatial resolution. (PDF contains 22 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cerebellum is a major supraspinal center involved in the coordination of movement. The principal neurons of the cerebellar cortex, Purkinje cells, receive excitatory synaptic input from two sources: the parallel and climbing fibers. These pathways have markedly different effects: the parallel fibers control the rate of simple sodium spikes, while the climbing fibers induce characteristic complex spike bursts, which are accompanied by dendritic calcium transients and play a key role in regulating synaptic plasticity. While many studies using a variety of species, behaviors, and cerebellar regions have documented modulation in Purkinje cell activity during movement, few have attempted to record from these neurons in unrestrained rodents. In this dissertation, we use chronic, multi-tetrode recording in freely-behaving rats to study simple and complex spike firing patterns during locomotion and sleep. Purkinje cells discharge rhythmically during stepping, but this activity is highly variable across steps. We show that behavioral variables systematically influence the step-locked firing rate in a step-phase-dependent way, revealing a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers, as well as functional differences between cerebellar lobules. These results suggest that Purkinje cell activity not only represents step phase within each cycle, but is also shaped by behavior across steps, facilitating control of movement under dynamic conditions. During sleep, we observe an attenuation of both simple and complex spiking, relative to awake behavior. Although firing rates during slow wave sleep (SWS) and rapid eye movement sleep (REM) are similar, simple spike activity is highly regular in SWS, while REM is characterized by phasic increases and pauses in simple spiking. This phasic activity in REM is associated with pontine waves, which propagate into the cerebellar cortex and modulate both simple and complex spiking. Such a temporal coincidence between parallel and climbing fiber activity is known to drive plasticity at parallel fiber synapses; consequently, pontocerebellar waves may provide a mechanism for tuning synaptic weights in the cerebellum during active sleep.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radio and sonic telemetry were used to investigate the tidal orientation, rate of movement (ROM), and surfacing behavior of nine Kemp's ridley turtles, Lepidochelys kempii, tracked east of the Cedar Keys, Florida. The mean of mean turtle bearings on incoming (48 ± 49 0) and falling (232 ± 41 0) tides was significantly oriented to the mean directions of tidal flow (37±9°, P<0.0025, and 234±9 0, P<0.005, respectively). Turtles had a mean ROM of 0.44±0.33 km/h (range: 0.004-1.758 km/h), a mean surface duration of 18± 15 s (range: 1-88 s), and a mean submergence duration of 8.4± 6.4 min (range: 0.2-60.0 min). ROM was negatively correlated with surface and submergence durations and positively correlated with the number of surfacings. Furthermore, ROMs were higher and surface and submergence durations were shorter during the day. Daily activities of turtles were attributed to food acquisition and bioenergetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early 20th century, a blue mussel species from the Mediterranean invaded the California coast and subsequently out-competed the native species south of Monterey Bay. Like other invasive species, Mytilus galloprovincialis has physiological traits that make it successful in habitats formerly occupied by the native M. trossulus, namely its adaptation to warm sea surface temperatures. This study looks at the current genotype distributions and enzymatic activities of field-acclimatized mussels within the hybrid zone where the species co-occur as well as mussels that have been acclimated for four weeks to different temperature and salinity conditions. In the field-acclimatized and laboratory-acclimated mussels, the native species exhibited significantly higher enzyme rates, which may reflect an evolutionary adaptation to compensate to low habitat temperatures. Indeed, the results of the laboratory acclimation indicate that these differences are genetically based. Whether an acclimation capacity exists may require even longer-term acclimation to different temperatures. Current findings suggest that the further spread of the invasive species is likely to be governed in large measure by the potentially counteracting effects of rising temperatures, which would favor the northerly spread of M. galloprovincialis, and increased winter precipitation, which would favor the persistence of M. trossulus. However, the success of M. galloprovincialis during acclimation to ‘dilute’ salinity (25 ppt) suggests that the invasive species can tolerate a greater salinity range than previously thought. Thus, further investigation is needed to build a comprehensive predictive model of the movement of M. galloprovincialis and the hybrid zone along the California coast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two sympatric populations of “transient” (mammal-eating) killer whales were photo-identified over 27 years (1984–2010) in Prince William Sound and Kenai Fjords, coastal waters of the northern Gulf of Alaska (GOA). A total of 88 individuals were identified during 203 encounters with “AT1” transients (22 individuals) and 91 encounters with “GOA” transients (66 individuals). The median number of individuals identified annually was similar for both populations (AT1=7; GOA=8), but mark-recapture estimates showed the AT1 whales to have much higher fidelity to the study area, whereas the GOA whales had a higher exchange of individuals. Apparent survival estimates were generally high for both populations, but there was a significant reduction in the survival of AT1 transients after the Exxon Valdez oil spill in 1989, with an abrupt decline in estimated abundance from a high of 22 in 1989 to a low of seven whales at the end of 2010. There was no detectable decline in GOA population abundance or survival over the same period, but abundance ranged from just 6 to 18 whales annually. Resighting data from adjacent coastal waters and movement tracks from satellite tags further indicated that the GOA whales are part of a larger population with a more extensive range, whereas AT1 whales are resident to the study area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Encouraging office workers to 'sit less and move more' encompasses two public health priorities. However, there is little evidence on the effectiveness of workplace interventions for reducing sitting, even less about the longer term effects of such interventions and still less on dual-focused interventions. This study assessed the short and mid-term impacts of a workplace web-based intervention (Walk@WorkSpain, W@WS; 2010-11) on self-reported sitting time, step counts and physical risk factors (waist circumference, BMI, blood pressure) for chronic disease. Methods Employees at six Spanish university campuses (n=264; 42 +/- 10 years; 171 female) were randomly assigned by worksite and campus to an Intervention (used W@WS; n=129; 87 female) or a Comparison group (maintained normal behavior; n=135; 84 female). This phased, 19-week program aimed to decrease occupational sitting time through increased incidental movement and short walks. A linear mixed model assessed changes in outcome measures between the baseline, ramping (8 weeks), maintenance (11 weeks) and follow-up (two months) phases for Intervention versus Comparison groups. Results A significant 2 (group) x 2 (program phases) interaction was found for self-reported occupational sitting (F[3]=7.97, p=0.046), daily step counts (F[3]=15.68, p=0.0013) and waist circumference (F[3]=11.67, p=0.0086). The Intervention group decreased minutes of daily occupational sitting while also increasing step counts from baseline (446 +/- 126; 8,862 +/- 2,475) through ramping (+425 +/- 120; 9,345 +/- 2,435), maintenance (+422 +/- 123; 9,638 +/- 3,131) and follow-up (+414 +/- 129; 9,786 +/- 3,205). In the Comparison group, compared to baseline (404 +/- 106), sitting time remained unchanged through ramping and maintenance, but decreased at follow-up (-388 +/- 120), while step counts diminished across all phases. The Intervention group significantly reduced waist circumference by 2.1cms from baseline to follow-up while the Comparison group reduced waist circumference by 1.3cms over the same period. Conclusions W@WSis a feasible and effective evidence-based intervention that can be successfully deployed with sedentary employees to elicit sustained changes on "sitting less and moving more".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From 2003 to 2006, 44,882 Yellowtail Flounder (Limanda ferruginea) were captured and released with conventional disc tags in the western North Atlantic as part of a cooperative Yellowtail Flounder tagging study. From these releases, 3767 of the tags were recovered. The primary objectives of this tagging program were to evaluate the mortality and large-scale movement of Yellowtail Flounder among 3 stock areas in New England. To explore mortality, survival and recovery rate were estimated from traditional Brownie tag-recovery models fitted to the data with Program MARK. Models were examined with time and sex-dependent parameters over several temporal scales. The models with a monthly scale for both survival and recovery rate had the best overall fit and returned parameter estimates that were biologically reasonable. Estimates of survival from the tag-recovery models confirm the general magnitude of total mortality derived from age-based stock assessments but indicate that survival was greater for females than for males. In addition to calculating mortality estimates, we examined the pattern of release and recapture locations and revealed frequent movements within stock areas and less frequent movement among stock areas. The collaboration of fishermen and scientists for this study successfully resulted in independent confirmation of previously documented patterns of movement and mortality rates from conventional age-based analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Caribbean, many coral reef associated fishes have been observed making diel migrations, yet little is known about the detailed movement pathways and space use patterns of individual fish. Often these migrations occur along temporally or spatially consistent corridors that connect preferred resting and foraging habitats. Recent analysis of gut contents from Haemulids and Lutjanids, has provided evidence that these species forage in seagrass beds and other habitats near their coral reef refuges. Few studies have provided direct and spatially explicit evidence of nocturnal migrations and detailed day and night space use patterns for individual fish. This study integrated manual acoustic telemetry to track two common reef species, the bluestriped grunt (Haemulon sciurus) and schoolmaster snapper (Lutjanus apodus) throughout their daily home range. Space use patterns of these species were then examined using Geographical Information System (GIS) tools to link movement behavior to seascape structure derived in a benthic habitat map. This study represents a novel integration of spatial technologies to enhance our understanding of the movement ecology of adult H. sciurus and L. apodus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This technical memorandum describes a developing project under the direction of NOAA’s Biogeography Branch in consultation with the National Park Service and US Geological Survey to understand and quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands. The purpose of this report is to describe and disseminate the initial results from the project and to share information on the location of acoustic receivers and species electronic tag ID codes. The Virgin Islands Coral Reef National Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), was established by Executive Order in 2000, but resources within the monument are poorly documented and the degree of connectivity to VIIS is unknown. Whereas, VICRNM was established with full protection from resource exploitation, VIIS has incurred resource harvest by fishers since 1956 as allowed in its enabling legislation. Large changes in local reef communities have occurred over the past several decades, in part due to overexploitation. In order to better understand the habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St, John, an array of hydroacoustic receivers was deployed while a variety of reef fish species were acoustically tagged. In July 2006, nine receivers with a detection range of ca. 350 m were deployed in Lameshur Bay on the south shore of St. John, within VIIS. Receivers were located adjacent to reefs and in seagrass beds, inshore and offshore of these reefs. It was found that lane snappers and bluestriped grunts showed diel movement from reef habitats during daytime hours to offshore seagrass bed at night. Timing of migrations was highly predictable and coincided with changes in sunrise and sunset over the course of the year. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. In April 2007, 21 additional receivers were deployed along much of the south shore of St. John (ca. 20 km of shoreline). This current array will address broader-scale movement among management units and examine the potential benefits of the VICRNM to provide adult “spillover” into VIIS and adjacent harvested areas. The results from this work will aid in defining fine to moderate spatial scales of reef fish habitat affinities and in designing and evaluating marine protected areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few studies have quantified the extent of nocturnal cross-habitat movements for fish, or the influence of habitat adjacencies on nutrient flows and trophodynamics. To investigate the patterns of nocturnal cross-boundary movements of fish and quantify trophic connectivity, fish were sampled at night with gillnets set along the boundaries between dominant habitat types (coral reef/seagrass and mangrove/seagrass) in southwestern Puerto Rico. Fish movement across adjacent boundary patches were equivalent at both coral reefs and mangroves. Prey biomass transfer was greater from seagrass to coral reefs (0.016 kg/km) and from mangroves to seagrass (0.006 kg/km) but not statistically significant, indicating a balance of flow between adjacent habitats. Pelagic species (jacks, sharks, rays) accounted for 37% of prey biomass transport at coral reef/seagrass and 46% at mangrove/seagrass while grunts and snappers accounted for 7% and 15%, respectively. This study indicated that coral reefs and mangroves serve as a feeding area for a wide range of multi-habitat fish species. Crabs were the most frequent prey item in fish leaving coral reefs while molluscs were observed slightly more frequently than crabs in fish entering coral reefs. For most prey types, biomass exported from mangroves was greater than biomass imported. The information on direction of fish movement together with analysis of prey data provided strong evidence of ecological linkages between distinct adjacent habitat types and highlighted the need for greater inclusion of a mosaic of multiple habitats when attempting to understand ecosystem function including the spatial transfer of energy across the seascape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From 1978 to 1988, approximately 71,000 spiny dogfish (Squalus acanthias) were tagged off the west coast of Canada. This program is the most extensive tagging study conducted for a shark species. Twelve years after the last year of tagging, recaptured tagged spiny dogfish are still being reported. As of December 2000, 2940 tagged fish (4.1%) have been recaptured. Spiny dogfish were tagged in three major areas: Strait of Georgia, west coast Vancouver Island, and northern British Columbia waters. Generally, spiny dogfish were recaptured close to their release site; however, extensive migrations (up to 7000 km) did occur. Migration rates varied across release areas. Spiny dogfish tagged in the Strait of Georgia underwent the least extensive movement; only 10–14% of the recaptures occurred outside the strait. Spiny dogfish tagged off the west coast of Vancouver Island or in northern British Columbia waters underwent more extensive movement; approximately 49–80% of the tagged spiny dogfish recaptured outside of the release areas. Spiny dogfish from all three release areas were recaptured off the west coast of United States and Alaska. Most impressive are the recaptures of tagged spiny dogfish off the coast of Japan. Over 30 spiny dog-fish were recaptured near Japan, most of which originated off the west coast of Vancouver Island or from northern British Columbia waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans. METHODOLOGY/PRINCIPAL FINDINGS: The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar. CONCLUSIONS/SIGNIFICANCE: Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned.