290 resultados para motile aeromonads


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recurrent airway obstruction is one of the most common airway diseases affecting mature horses. Increased bronchoalveolar mucus, neutrophil accumulation in airways, and airway obstruction are the main features of this disease. Mucociliary clearance is a key component of pulmonary defense mechanisms. Cilia are the motile part of this system and a complex linear array of dynein motors is responsible for their motility by moving along the microtubules in the axonemes of cilia and flagella. We previously detected a QTL for RAO on ECA 13 in a half-sib family of European Warmblood horses. The gene encoding DNAH3 is located in the peak of the detected QTL and encodes a dynein subunit. Therefore, we analysed this gene as a positional and functional candidate gene for RAO. In a mutation analysis of all 62 exons we detected 53 new polymorphisms including 7 non-synonymous variants. We performed an association study using 38 polymorphisms in a cohort of 422 animals. However, after correction for multiple testing we did not detect a significant association of any of these polymorphisms with RAO (P>0.05). Therefore, it seems unlikely that variants at the DNAH3 gene are responsible for the RAO QTL in European Warmblood horses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND A novel Gram-negative, non-haemolytic, non-motile, rod-shaped bacterium was discovered in the lungs of a dead parakeet (Melopsittacus undulatus) that was kept in captivity in a petshop in Basel, Switzerland. The organism is described with a chemotaxonomic profile and the nearly complete genome sequence obtained through the assembly of short sequence reads. RESULTS Genome sequence analysis and characterization of respiratory quinones, fatty acids, polar lipids, and biochemical phenotype is presented here. Comparison of gene sequences revealed that the most similar species is Pelistega europaea, with BLAST identities of only 93% to the 16S rDNA gene, 76% identity to the rpoB gene, and a similar GC content (~43%) as the organism isolated from the parakeet, DSM 24701 (40%). The closest full genome sequences are those of Bordetella spp. and Taylorella spp. High-throughput sequencing reads from the Illumina-Solexa platform were assembled with the Edena de novo assembler to form 195 contigs comprising the ~2 Mb genome. Genome annotation with RAST, construction of phylogenetic trees with the 16S rDNA (rrs) gene sequence and the rpoB gene, and phylogenetic placement using other highly conserved marker genes with ML Tree all suggest that the bacterial species belongs to the Alcaligenaceae family. Analysis of samples from cages with healthy parakeets suggested that the newly discovered bacterial species is not widespread in parakeet living quarters. CONCLUSIONS Classification of this organism in the current taxonomy system requires the formation of a new genus and species. We designate the new genus Basilea and the new species psittacipulmonis. The type strain of Basilea psittacipulmonis is DSM 24701 (= CIP 110308 T, 16S rDNA gene sequence Genbank accession number JX412111 and GI 406042063).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polyphasic taxonomic analysis was carried out on 11 uncommon Gram-stain-negative, non-motile, catalase- and oxidase-positive, but indole-negative, bacterial strains isolated from tortoises. Phenotypically and genetically they represented a homogeneous group of organisms most closely related to, but distinct from, Uruburuella suis. In a reconstructed 16S rRNA gene tree they clustered on a monophyletic branch next to U. suis with gene similarities between strains of 99.5-100%, and of up to 98.2% with U. suis . DNA-DNA hybridization indicated the organisms represented a novel species with only 40% DNA-DNA similarity with U. suis . Partial sequencing of rpoB resulted in two subclusters confirming the 16S rRNA gene phylogeny; both genes allowed clear separation and identification of the novel species. Furthermore, they could be unambiguously identified by matrix-assisted laser desorption ionization time-of-flight MS, where, again, they formed a highly homogeneous cluster separate from U. suis and other members of the family Neisseriaceae . The major fatty acids were C(16 : 0) and summed feature C(16 : 1)ω7c/iso-C(15 : 0) 2-OH. The DNA G+C content was 54.4 mol%. Based on phenotypic and genetic data we propose classifying these organisms as representatives of a novel species named Uruburuella testudinis sp. nov. The type strain is 07_OD624(T) ( = DSM 26510(T) = CCUG 63373(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three canonical Rho GTPases RhoA, Rac1 and Cdc42 co-ordinate cytoskeletal dynamics. Recent studies indicate that all three Rho GTPases are activated at the leading edge of motile fibroblasts, where their activity fluctuates at subminute time and micrometer length scales. Here, we use a microfluidic chip to acutely manipulate fibroblast edge dynamics by applying pulses of platelet-derived growth factor (PDGF) or the Rho kinase inhibitor Y-27632 (which lowers contractility). This induces acute and robust membrane protrusion and retraction events, that exhibit stereotyped cytoskeletal dynamics, allowing us to fairly compare specific morphodynamic states across experiments. Using a novel Cdc42, as well as previously described, second generation RhoA and Rac1 biosensors, we observe distinct spatio-temporal signaling programs that involve all three Rho GTPases, during protrusion/retraction edge dynamics. Our results suggest that Rac1, Cdc42 and RhoA regulate different cytoskeletal and adhesion processes to fine tune the highly plastic edge protrusion/retraction dynamics that power cell motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetically encoded, ratiometric biosensors based on fluorescence resonance energy transfer (FRET) are powerful tools to study the spatiotemporal dynamics of cell signaling. However, many biosensors lack sensitivity. We present a biosensor library that contains circularly permutated mutants for both the donor and acceptor fluorophores, which alter the orientation of the dipoles and thus better accommodate structural constraints imposed by different signaling molecules while maintaining FRET efficiency. Our strategy improved the brightness and dynamic range of preexisting RhoA and extracellular signal-regulated protein kinase (ERK) biosensors. Using the improved RhoA biosensor, we found micrometer-sized zones of RhoA activity at the tip of F-actin bundles in growth cone filopodia during neurite extension, whereas RhoA was globally activated throughout collapsing growth cones. RhoA was also activated in filopodia and protruding membranes at the leading edge of motile fibroblasts. Using the improved ERK biosensor, we simultaneously measured ERK activation dynamics in multiple cells using low-magnification microscopy and performed in vivo FRET imaging in zebrafish. Thus, we provide a construction toolkit consisting of a vector set, which enables facile generation of sensitive biosensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary ciliary dyskinesia is a rare heterogeneous recessive genetic disorder of motile cilia, leading to chronic upper and lower respiratory symptoms. Prevalence is estimated at around 1:10,000, but many patients remain undiagnosed, while others receive the label incorrectly. Proper diagnosis is complicated by the fact that the key symptoms such as wet cough, chronic rhinitis and recurrent upper and lower respiratory infection, are common and nonspecific. There is no single gold standard test to diagnose PCD. Presently, the diagnosis is made by augmenting the medical history and physical examination with in patients with a compatible medical history following a demanding combination of tests including nasal nitric oxide, high- speed video microscopy, transmission electron microscopy, genetics, and ciliary culture. These tests are costly and need sophisticated equipment and experienced staff, restricting use to highly specialised centers. Therefore, it would be desirable to have a screening test for identifying those patients who should undergo detailed diagnostic testing. Three recent studies focused on potential screening tools: one paper assessed the validity of nasal nitric oxide for screening, and two studies developed new symptom-based screening tools. These simple tools are welcome, and hopefully remind physicians whom to refer for definitive testing. However, they have been developed in tertiary care settings, where 10 to 50% of tested patients have PCD. Sensitivity and specificity of the tools are reasonable, but positive and negative predictive values may be poor in primary or secondary care settings. While these studies take an important step forward towards an earlier diagnosis of PCD, more remains to be done before we have tools tailored to different health care settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Channelrhodopsins are phototaxis receptors in the plasma membranes of motile unicellular algae. They function as light-gated cation channels and this channel activity has been exploited to trigger action potentials in neurons with light to control neural circuits (“optogenetics"). Four channelrhodopsins were identified in two algal species, Chlamydomonas reinhardtii and Volvox carteri, with known genome sequences; each species contains 2 channelrhodopsins, one absorbing at longer wavelengths and one at shorter wavelengths, named CrChR1 and CrChR2, respectively. Our goals are to expand knowledge of channelrhodopsin mechanisms and also to identify new channelrhodopsins from various algal species with improved properties for optogenetic use. For these aims we are targeting algae from extreme environments to establish the natural diversity of their properties. We cloned a new channelrhodopsin from the psychrophilic (cold-loving) alga, Chlamydomonas augustae, with degenerate primers based on the 4 known homologs. The new protein is 48% and 52% identical to CrChR1 and CrChR2, respectively. We expressed the channelrhodopsin in HEK293 cells and measured light-induced currents to assess their kinetics and action spectrum. Based on the primary structure, kinetics of light-induced photocurrents in HEK293 cells, and action spectrum maximum of 520 nm near that of the two previously found CrChR1, we named the new channelrhodopsin CaChR1. The properties of robust channel activity at physiological pH, fast on-and-off kinetics, and greatly red-shifted action spectrum maximum from that of CrChR2, make CaChR1 advantageous as an optogenetic tool. To know this new channelrhodopsin better, we expressed His-tagged CaChR1 in Pichia pastoris and the yield is about 6 mg/L. The purified His-tagged CaChR1 exhibited an absorption spectrum identical to the action spectrum of CaChR1-generated photocurrents. The future work will be measurement of the photocycles of CaChR1 by flash photolysis, crystallization of CaChR1 for the structure and mutagenesis of CaChR1 to find the critical amino acids accounting for red-shifted spectra, slow inactivation and rapid on-and-off kinetics. Seven new channelrhodopsins including CaChR1 from different algal species have been cloned in our lab at this time, bringing the total known to 13. The work of cloning of these new channelrhodopsins along with the expression of CaChR1 was published in Photochemistry and Photobiology in January 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Late Permian mass extinction event about 252 million years ago was the most severe biotic crisis of the past 500 million years and occurred during an episode of global warming. The loss of around two-thirds of marine genera is thought to have had substantial ecological effects, but the overall impacts on the functioning of marine ecosystems and the pattern of marine recovery are uncertain. Here we analyse the fossil occurrences of all known benthic marine invertebrate genera from the Permian and Triassic periods, and assign each to a functional group based on their inferred lifestyle. We show that despite the selective extinction of 62-74% of these genera, all but one functional group persisted through the crisis, indicating that there was no significant loss of functional diversity at the global scale. In addition, only one new mode of life originated in the extinction aftermath. We suggest that Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed. Functional diversity was, however, reduced in particular regions and habitats, such as tropical reefs; at these smaller scales, recovery varied spatially and temporally, probably driven by migration of surviving groups. We find that marine ecosystems did not return to their pre-extinction state, and by the Middle Triassic greater functional evenness is recorded, resulting from the radiation of previously subordinate groups such as motile, epifaunal grazers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in delta pH -0.3 (35% reduction) and delta pH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Survival of coral planulae, and the successful settlement and healthy growth of primary polyps are critical for the dispersal of scleractinian corals and hence the recovery of degraded coral reefs. It is therefore important to explore how the warmer and more acidic oceanic conditions predicted for the future could affect these processes. This study used controlled culture to investigate the effects of a 1 °C increase in temperature and a 0.2-0.25 unit decrease in pH on the settlement and survival of planulae and the growth of primary polyps in the Tropical Eastern Pacific coral Porites panamensis. We found that primary polyp growth was reduced only marginally by more acidic seawater but the combined effect of high temperature and lowered pH caused a significant reduction in growth of primary polyps by almost a third. Elevated temperature was found to significantly reduce the amount of zooxanthellae in primary polyps, and when combined with lowered pH resulted in a significant reduction in biomass of primary polyps. However, survival and settlement of planula larvae were unaffected by increased temperature, lowered acidity or the combination of both. These results indicate that in future scenarios of increased temperature and oceanic acidity coral planulae will be able to disperse and settle successfully but primary polyp growth may be hampered. The recovery of reefs may therefore be impeded by global change even if local stressors are curbed and sufficient sources of planulae are available.