994 resultados para molecular types
Resumo:
Fertilization in Chlamydomonas is initiated by adhesive interactions between gametes of opposite mating types through flagellar glycoproteins called agglutinins. Interactions between these cell adhesion molecules signal for the activation of adenylyl cyclase through an interplay of protein kinases and ultimately result in formation of a diploid zygote. One of the early events during adhesion-induced signal transduction is the rapid inactivation of a flagellar protein kinase that phosphorylates a 48-kDa protein in the flagella. We report the biochemical and molecular characterization of the 48-kDa protein. Experiments using a bacterially expressed fusion protein show that the 48-kDa protein is capable of autophosphorylation on serine and tyrosine and phosphorylation of bovine beta-casein on serine, confirming that the 48-kDa protein itself has protein kinase activity. This protein kinase exhibits limited homology to members of the eukaryotic protein kinase superfamily and may be an important element in a signaling pathway in fertilization.
Resumo:
The goal of this study is to better understand the genetic basis of Reading Disability (RD) and Attention Deficit Hyperactivity Disorder (ADHD) by examining molecular G x E interactions with parental education for each disorder. Research indicates that despite sharing genetic risk factors, RD and ADHD are influenced by different types of G x E interactions with parental education - a diathesis stress interaction in the case of ADHD and a bioecological interaction in RD. In order to resolve this apparent paradox, we conducted a preliminary study using behavioral genetic methods to test for G x E interactions in RD and the inattentive subtype of ADHD (ADHD-I) in the same sample of monozygotic and dizygotic Colorado Learning Disabilities Research Center same-sex twin pairs (DeFries et al., 1997), and our findings were consistent with the literature. We posited a genetic hypothesis for this opposite pattern of interactions, which suggests that only genes specific to each disorder enter into these opposite interactions, not the shared genes underlying their comorbidity. This study sought to further investigate this paradox using molecular genetics methods. We examined multiple candidate genes identified for RD or related language phenotypes and those identified for ADHD for G x E interactions with parental education. The specific aims of this study were as follows: 1) partition known risk alleles for RD and/or related language phenotypes and ADHD-I into those which are pleiotropic and non-pleiotropic by testing each risk allele for association with both RD and ADHD-I, 2) explore the main effects of parental education on both RD and ADHD-I, 3) address G-E correlations, and 4) conduct exploratory G x E interaction analyses in order to test the genetic hypothesis. Analyses suggested a number of pleiotropic genes that influence both RD and ADHD; however, results did not remain after correcting for multiple comparisons. Although exploratory G x E interaction findings were not significant after multiple comparison correction, results suggested a G x E interaction in the bioecological direction with KIAA0319, parental education, and ADHD-I. Given the limited power in the current study, replication of these findings with larger samples is necessary.
Resumo:
The simplicity of single-molecule junctions based on direct bonding of a small molecule between two metallic electrodes makes them an ideal system for the study of fundamental questions related to molecular electronics. Here we study the conductance properties of six different types of molecules by suspending individual molecules between Pt electrodes. All the molecular junctions show a typical conductance of about 1G0 which is ascribed to the dominant role of the Pt contacts. However, despite the metalliclike conductivity, the individual molecular signature is well expressed by the effect of molecular vibrations in the inelastic contribution to the conductance.
Resumo:
Carbon molecular sieve membranes have been analyzed in supported and unsupported configurations in this experimental study. The membranes were used to adsorb CO2, N2 and CH4, and their adsorption data were analyzed to establish differences in rate and capacity of adsorption between the two types of samples (supported and unsupported). Experimental results show an important effect of the support, which can be considered as an additional parameter to tailor pore size on these carbon membranes. Immersion calorimetry values were measured by immersing the membranes into liquids of different molecular dimensions (dichloromethane, benzene, n-hexane, 2,2-dimethylbutane). Similarities were found between adsorption and calorimetric analysis. The pore volume of the samples analyzed ranged from 0.016 to 0.263 cm3/g. The effect of the pyrolysis temperature, either 550 or 700 °C, under N2 atmosphere was also analyzed. Quantification of the pore-size distribution of the support was done by liquid-liquid displacement porosimetry. The composite membrane was used for CO2/CH4 separation before and after pore plugging was done. The ideal selectivity factors value (4.47) was over the Knudsen theoretical factor (0.60) for membrane pyrolyzed at 600 °C, which indicates the potential application of these membranes for the separation of low-molecular weight gases.
Resumo:
To solve problems in polymer fluid dynamics, one needs the equation of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (1) one can write a continuum expression for the stress tensor in terms of kinematic tensors, or (2) one can select a molecular model that represents the polymer molecule, and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. In this review, we restrict the discussion primarily to the simplest stress tensor expressions or “constitutive equations” containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. The virtue of studying the simplest models is that we can discover some general notions as to which types of empiricisms or which types of molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows. These are the flows that are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.
Resumo:
Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.
Resumo:
The presence of sedimentary organic matter blanketing midocean ridge crests has a potentially strong impact on metal transport in hydrothermal vent fluids. To constrain the role of organic matter in metal mobility during hydrothermal sediment alteration, we reacted organic-rich diatomaceous ooze from Guaymas Basin, Gulf of California, and organic-poor hemipelagic mud from Middle Valley, northern Juan de Fuca Ridge, with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity, at 275° to 400°C, 350 to 500 bars, and initial fluid: sediment mass ratios ranging from 1.6 to 9.8. Reaction of these fluids with both sediment types released CO2 and high concentrations of ore-forming metals (Fe, Mn, Zn, Pb) to solution. Relatively low concentrations of Cu were observed in solution and likely reflect the reducing conditions that resulted from the presence of sedimentary organic matter. Both the concentrations of CO2 and dissolved metals were lower in fluids reacted with Middle Valley sediment compared with aqueous concentrations in fluids reacted with Guaymas Basin sediment. During alteration of both sediment types, metal concentrations varied strongly as a function of temperature, increasing by up to an order of magnitude over the 75°C range of each experiment. Major element fluid chemistry and observed alteration assemblages suggest that during hydrothermal alteration of organic-lean sediment from Middle Valley a feldspar-quartz-illite mineral assemblage buffered in situ pH. In contrast, data from the experimental alteration of organic-rich Guaymas Basin sediment suggest that a calcite-plagioclase-quartz assemblage regulated in situ pH. Fluid speciation calculations suggest that in situ pH during Guaymas Basin sediment alteration was lower than during alteration of Middle Valley sediment and accounts for the substantially greater metal mobility at a given temperature and pressure during the former experiment. Comparison of our results with the results of basalt alteration experiments indicate that except for Cu, hydrothermal sediment alteration results in equal or greater concentrations of ore-forming metals at a given temperature and pressure. Accordingly, the presence of ore-forming metals in fluids currently venting from sediment-covered hydrothermal systems at concentrations substantially lower than in fluids from bare-rock systems may reflect chemical reequilibration during subsurface cooling within the sediment pile.
Resumo:
The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? It has been shown that all two-body Hamiltonian evolutions can be simulated using any fixed two-body entangling n-qubit Hamiltonian and fast local unitaries. By entangling we mean that every qubit is coupled to every other qubit, if not directly, then indirectly via intermediate qubits. We extend this study to the case where interactions may involve more than two qubits at a time. We find necessary and sufficient conditions for an arbitrary n-qubit Hamiltonian to be dynamically universal, that is, able to simulate any other Hamiltonian acting on n qubits, possibly in an inefficient manner. We prove that an entangling Hamiltonian is dynamically universal if and only if it contains at least one coupling term involving an even number of interacting qubits. For odd entangling Hamiltonians, i.e., Hamiltonians with couplings that involve only an odd number of qubits, we prove that dynamic universality is possible on an encoded set of n-1 logical qubits. We further prove that an odd entangling Hamiltonian can simulate any other odd Hamiltonian and classify the algebras that such Hamiltonians generate. Thus, our results show that up to local unitary operations, there are only two fundamentally different types of entangling Hamiltonian on n qubits. We also demonstrate that, provided the number of qubits directly coupled by the Hamiltonian is bounded above by a constant, our techniques can be made efficient.
Resumo:
The dwarf somaclonal variant is a major problem affecting micropropagation of the banana cultivar Williams (Musa spp. AAA; subgroup Cavendish). This problem arises from genetic changes that occur during the tissue culture process. Early identification of this problem is difficult and propagators must wait until plants are ex vitro in order to visualise the dwarfism phenotype. In this study, we have improved a SCAR-based molecular diagnostic technique, developed by Damasco et al. [Acta Hortic. 461 (1997) 157], for the early identification of dwarf off-types. We have included a positive internal control in a multiplex PCR and adapted the technique for use with small amounts of fresh in vitro leaf material as PCR template. The control product is a 500 bp fragment from 18S rRNA and is amplified in all tissues irrespective of phenotype. The use of small in vitro leaf material removing the need for genomic DNA extraction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A common problem encountered during the development of MS methods for the quantitation of small organic molecules by LGMS is the formation of non-covalently bound species or adducts in the electrospray interface. Often the population of the molecular ion is insignificant compared to those of all other forms of the analyte produced in the electrospray, making it difficult to obtain the sensitivity required for accurate quantitation. We have investigated the effects of the following variables: orifice potential, nebulizer gas flow, temperature, solvent composition and the sample pH on the relative distributions of ions of the types MH+, MNa+, MNH+, and 2MNa(+), where M represents a 4 small organic molecule: BAY 11-7082 ((E)-3-[4-methylphenylsulfonyl]-2-propenenitrile). Orifice potential, solvent composition and the sample pH had the greatest influence on the relative distributions of these ions, making these parameters the most useful for optimizing methods for the quantitation of small molecules.
Resumo:
Measurement of protein-polymer second virial coefficients (B-AP) by sedimentation equilibrium studies of carbonic anhydrase and cytochrome c in the presence of dextrans (T10-T80) has revealed an inverse dependence of B-AP upon dextran molecular mass that conforms well with the behaviour predicted for the excluded-volume interaction between a spherical protein solute A and a random-flight representation of the polymeric cosolute P. That model of the protein-polymer interaction is also shown to provide a reasonable description of published gel chromatographic and equilibrium dialysis data on the effect of polymer molecular mass on BAP for human serum albumin in the presence of polyethylene glycols, a contrary finding from analysis of albumin solubility measurements being rejected on theoretical grounds. Inverse dependence upon polymer chainlength is also the predicted excluded-volume effect on the strength of several types of macromolecular equilibria-protein isomerization, protein dimerization, and 1 : 1 complex formation between dissimilar protein reactants. It is therefore concluded that published experimental observations of the reverse dependence, preferential reaction enhancement within DNA replication complexes by larger polyethylene glycols, must reflect the consequences of cosolute chemical interactions that outweigh those of thermodynamic nonideality arising from excluded-volume effects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
1, During embryonic development, a diverse array of neurons and glia are generated at specific positions along the dorsoventral and rostro-caudal axes of the spinal cord from a common pool of precursor cells. 2. This cell type diversity can be distinguished by the spatially and temporally coordinated expression of several transcription factors that are also linked to cell type specification at a very early stage of spinal cord development. 3, Recent studies have started to uncover that the generation of cell type diversity in the developing spinal cord. Moreover, distinct cell types in the spinal cord appear to be determined by the spatially and temporally coordinated expression of transcription factors. 4. The expression of these factors also appears to be controlled by gradients of factors expressed by ventral and dorsal midline cells, namely Sonic hedgehog and members of the transforming growth factor-beta family. 5, Changes in the competence of precursor cells and local cell interactions may also play important roles in cell type specification within the developing spinal cord.
Resumo:
Computer simulated trajectories of bulk water molecules form complex spatiotemporal structures at the picosecond time scale. This intrinsic complexity, which underlies the formation of molecular structures at longer time scales, has been quantified using a measure of statistical complexity. The method estimates the information contained in the molecular trajectory by detecting and quantifying temporal patterns present in the simulated data (velocity time series). Two types of temporal patterns are found. The first, defined by the short-time correlations corresponding to the velocity autocorrelation decay times (â‰0.1â€ps), remains asymptotically stable for time intervals longer than several tens of nanoseconds. The second is caused by previously unknown longer-time correlations (found at longer than the nanoseconds time scales) leading to a value of statistical complexity that slowly increases with time. A direct measure based on the notion of statistical complexity that describes how the trajectory explores the phase space and independent from the particular molecular signal used as the observed time series is introduced. © 2008 The American Physical Society.
Resumo:
The number, diversity and restriction enzyme fragmentation patterns of plasmids harboured by 44 multidrug-resistant hospital-acquired methicillin-resistant Staphylococcus aureus (MR-HA-MRSA) isolates, two multidrug-resistant community-acquired MRSA (MR-CA-MRSA), 50 hospital-acquired MRSA (HA-MRSA) isolates (from the University Hospital Birmingham, NHS Trust, UK) and 34 community-acquired MRSA (CA-MRSA) isolates (from general practitioners in Birmingham, UK) were compared. In addition, pulsed-field gel electrophoresis (PFGE) type following SmaI chromosomal digest and SCCmec element type assignment were ascertained for each isolate. All MR-HA-MRSA and MR-CA-MRSA isolates possessed the type II SCCmec, harboured no plasmid DNA and belonged to one of five PFGE types. Forty-three out of 50 HA-MRSA isolates and all 34 CA-MRSA isolates possessed the type IV SCCmec and all but 10 of the type IV HA-MRSA isolates and nine CA-MRSA isolates carried one or two plasmids. The 19 non-multidrug-resistant isolates (NMR) that did not harbour plasmids were only resistant to methicillin whereas all the NMR isolates harbouring at least one plasmid were resistant to at least one additional antibiotic. We conclude that although plasmid carriage plays an important role in antibiotic resistance, especially in NMR-HA-MRSA and CA-MRSA, the multidrug resistance phenotype from HA-MRSA is not associated with increased plasmid carriage and indeed is characterised by an absence of plasmid DNA. © 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.