972 resultados para minimal occlusive volume technique
Resumo:
Due to its non-invasive character, the forced oscillation technique has gained importance in clinical research in infants and young children. Standardisation has enabled systematic and comparable measurements to be made in different laboratories throughout the world. The theoretical conditions are now fulfilled for use of these techniques in the clinical environment. This review discusses the principles, usefulness and pitfalls of various forced oscillation techniques in a research and clinical environment and the present and future clinical applications in children. It will focus particularly on the role of infant and preschool lung function as forced oscillation only requires minimal cooperation.
Resumo:
In order to assess the clinical relevance of a slice-to-volume registration algorithm, this technique was compared to manual registration. Reformatted images obtained from a diagnostic CT examination of the lower abdomen were reviewed and manually registered by 41 individuals. The results were refined by the algorithm. Furthermore, a fully automatic registration of the single slices to the whole CT examination, without manual initialization, was also performed. The manual registration error for rotation and translation was found to be 2.7+/-2.8 degrees and 4.0+/-2.5 mm. The automated registration algorithm significantly reduced the registration error to 1.6+/-2.6 degrees and 1.3+/-1.6 mm (p = 0.01). In 3 of 41 (7.3%) registration cases, the automated registration algorithm failed completely. On average, the time required for manual registration was 213+/-197 s; automatic registration took 82+/-15 s. Registration was also performed without any human interaction. The resulting registration error of the algorithm without manual pre-registration was found to be 2.9+/-2.9 degrees and 1.1+/-0.2 mm. Here, a registration took 91+/-6 s, on average. Overall, the automated registration algorithm improved the accuracy of manual registration by 59% in rotation and 325% in translation. The absolute values are well within a clinically relevant range.
Resumo:
The objective of this prospective experimental cadaveric study was to develop an ultrasound-guided technique to perform an anaesthetic pudendal nerve block in male cats. Fifteen fresh cadavers were used for this trial. A detailed anatomical dissection was performed on one cat in order to scrutinise the pudendal nerve and its ramifications. In a second step, the cadavers of six cats were used to test three different ultrasonographic approaches to the pudendal nerve: the deep dorso-lateral, the superficial dorso-lateral and the median transperineal. Although none of the approaches allowed direct ultrasonographical identification of the pudendal nerve branches, the deep dorso-lateral was found to be the most advantageous one in terms of practicability and ability to identify useful and reliable landmarks. Based on these findings, the deep dorso-lateral approach was selected as technique of choice for tracer injections (0.1 ml 1% methylene blue injected bilaterally) in six cat cadavers distinct from those used for the ultrasonographical study. Anatomical dissection revealed a homogeneous spread of the tracer around the pudendal nerve sensory branches in all six cadavers. Finally, computed tomography was performed in two additional cadavers after injection of 0.3 ml/kg (0.15 ml/kg per each injection sites, left and right) contrast medium through the deep dorso-lateral approach in order to obtain a model of volume distribution applicable to local anaesthetics. Our findings in cat cadavers indicate that ultrasound-guided pudendal nerve block is feasible and could be proposed to provide peri-operative analgesia in clinical patients undergoing perineal urethrostomy.
Resumo:
Purpose: Respiratory motion causes substantial uncertainty in radiotherapy treatment planning. Four-dimensional computed tomography (4D-CT) is a useful tool to image tumor motion during normal respiration. Treatment margins can be reduced by targeting the motion path of the tumor. The expense and complexity of 4D-CT, however, may be cost-prohibitive at some facilities. We developed an image processing technique to produce images from cine CT that contain significant motion information without 4D-CT. The purpose of this work was to compare cine CT and 4D-CT for the purposes of target delineation and dose calculation, and to explore the role of PET in target delineation of lung cancer. Methods: To determine whether cine CT could substitute 4D-CT for small mobile lung tumors, we compared target volumes delineated by a physician on cine CT and 4D-CT for 27 tumors with intrafractional motion greater than 1 cm. We assessed dose calculation by comparing dose distributions calculated on respiratory-averaged cine CT and respiratory-averaged 4D-CT using the gamma index. A threshold-based PET segmentation model of size, motion, and source-to-background was developed from phantom scans and validated with 24 lung tumors. Finally, feasibility of integrating cine CT and PET for contouring was assessed on a small group of larger tumors. Results: Cine CT to 4D-CT target volume ratios were (1.05±0.14) and (0.97±0.13) for high-contrast and low-contrast tumors respectively which was within intraobserver variation. Dose distributions on cine CT produced good agreement (< 2%/1 mm) with 4D-CT for 71 of 73 patients. The segmentation model fit the phantom data with R2 = 0.96 and produced PET target volumes that matched CT better than 6 published methods (-5.15%). Application of the model to more complex tumors produced mixed results and further research is necessary to adequately integrate PET and cine CT for delineation. Conclusions: Cine CT can be used for target delineation of small mobile lesions with minimal differences to 4D-CT. PET, utilizing the segmentation model, can provide additional contrast. Additional research is required to assess the efficacy of complex tumor delineation with cine CT and PET. Respiratory-averaged cine CT can substitute respiratory-averaged 4D-CT for dose calculation with negligible differences.
Resumo:
Missense mutations in smooth muscle cell (SMC) specific ACTA2 (á-actin) and MYH11 (â-myosin heavy chain) cause diffuse and diverse vascular diseases, including thoracic aortic aneurysms and dissections (TAAD) and early onset coronary artery disease and stroke. The mechanism by which these mutations lead to dilatation of some arteries but occlusion of others is unknown. We hypothesized that the mutations act through two distinct mechanisms to cause varied vascular diseases: a loss of function, leading to decreased SMC contraction and aneurysms, and a gain of function, leading to increased SMC proliferation and occlusive disease. To test this hypothesis, ACTA2 mutant SMCs and myofibroblasts were assessed and found to not form á-actin filaments whereas control cells did, suggesting a dominant negative effect of ACTA2 mutations on filament formation. A loss of á-actin filaments would be predicted to cause decreased SMC contractility. Histological examination of vascular tissues from patients revealed SMC hyperplasia leading to arterial stenosis and occlusion, supporting a gain of function associated with the mutant gene. Furthermore, ACTA2 mutant SMCs and myofibroblasts proliferated more rapidly in static culture than control cells (p<0.05). We also determined that Acta2-/- mice have ascending aortic aneurysms. Histological examination revealed aortic medial SMC hyperplasia, but minimal features of medial degeneration. Acta2-/- SMCs proliferated more rapidly in culture than wildtype (p<0.05), and microarray analysis of Acta2-/- SMCs revealed increased expression of Actg2, 15 collagen genes, and multiple focal adhesion genes. Acta2-/- SMCs showed altered localization of vinculin and zyxin and increased phosphorylated focal adhesion kinase (FAK) in focal adhesions. A specific FAK inhibitor decreased Acta2-/- SMC proliferation to levels equal to wildtype SMCs (p<0.05), suggesting that FAK activation leads to the increased proliferation. We have described a unique pathology associated with ACTA2 and MYH11 mutations, as well as an aneurysm phenotype in Acta2-/- mice. Additionally, we identified a novel pathogenic pathway for vascular occlusive disease due to loss of SMC contractile filaments, alterations in focal adhesions, and activation of FAK signaling in SMCs with ACTA2 mutations.
Resumo:
OBJECTIVES The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD. METHODS An anthropomorphic chest phantom containing artificial solid and ground glass nodules (GGNs, 5-12 mm) was examined with a 64-row multi-detector CT scanner with three tube currents of 100, 50 and 25 mAs in combination with three tube voltages of 120, 100 and 80 kVp. This resulted in eight different protocols that were then compared to standard CT sensitivity (100 mAs/120 kVp). For each protocol, at least 127 different nodules were scanned in 21-25 phantoms. The nodules were analyzed in two separate sessions by three independent, blinded radiologists and computer-aided detection (CAD) software. RESULTS The mean sensitivity of the radiologists for identifying solid lung nodules on a standard CT was 89.7% ± 4.9%. The sensitivity was not significantly impaired when the tube and current voltage were lowered at the same time, except at the lowest exposure level of 25 mAs/80 kVp [80.6% ± 4.3% (p = 0.031)]. Compared to the standard CT, the sensitivity for detecting GGNs was significantly lower at all dose levels when the voltage was 80 kVp; this result was independent of the tube current. The CAD significantly increased the radiologists' sensitivity for detecting solid nodules at all dose levels (5-11%). No significant volume measurement errors (VMEs) were documented for the radiologists or the CAD software at any dose level. CONCLUSIONS Our results suggest a CT protocol with 25 mAs and 100 kVp is optimal for detecting solid and ground glass nodules in lung cancer screening. The use of CAD software is highly recommended at all dose levels.
Resumo:
The presence of surface meltwater on ice caps and ice sheets is an important glaciological and climatological characteristic. We describe an algorithm for estimating the depth and hence volume of surface melt ponds using multispectral ASTER satellite imagery. The method relies on reasonable assumptions about the albedo of the bottom surface of the ponds and the optical attenuation characteristics of the ponded meltwater. We apply the technique to sequences of satellite imagery acquired over the western margin of the Greenland Ice Sheet to derive changes in melt pond extent and volume during the period 2001 - 2004. Results show large intra- and interannual changes in ponded water volumes, and large volumes of liquid water stored in extensive slush zones.
Resumo:
INTRODUCTION the rise in the number of older, frail adults necessitates that future doctors are adequately trained in the skills of geriatric medicine. Few countries have dedicated curricula in geriatric medicine at the undergraduate level. The aim of this project was to develop a consensus among geriatricians on a curriculum with the minimal requirements that a medical student should achieve by the end of medical school. METHODS a modified Delphi process was used. First, educational experts and geriatricians proposed a set of learning objectives based on a literature review. Second, three Delphi rounds involving a panel with 49 experts representing 29 countries affiliated to the European Union of Medical Specialists (UEMS) was used to gain consensus for a final curriculum. RESULTS the number of disagreements following Delphi Rounds 1 and 2 were 81 and 53, respectively. Complete agreement was reached following the third round. The final curriculum consisted of detailed objectives grouped under 10 overarching learning outcomes. DISCUSSION a consensus on the minimum requirements of geriatric learning objectives for medical students has been agreed by European geriatricians. Major efforts will be needed to implement these requirements, given the large variation in the quality of geriatric teaching in medical schools. This curriculum is a first step to help improve teaching of geriatrics in medical schools, and will also serve as a basis for advancing postgraduate training in geriatrics across Europe.
Resumo:
Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy applicable and powerful tool to identify trochlea dysplasia in newborns and might be used for screening for trochlea dysplasia.
Resumo:
We read with great interest the large-scale network meta-analysis by Kowalewski et al. comparing clinical outcomes of patients undergoing coronary artery bypass grafting (CABG) operated on using minimal invasive extracorporeal circulation (MiECC) or off-pump (OPCAB) with those undergoing surgery on conventional cardiopulmonary bypass (CPB) [1]. The authors actually integrated into single study two recently published meta-analysis comparing MiECC and OPCAB with conventional CPB, respectively [2, 3] into a single study. According to the results of this study, MiECC and OPCAB are both strongly associated with improved perioperative outcomes following CABG when compared with CABG performed on conventional CPB. The authors conclude that MiECC may represent an attractive compromise between OPCAB and conventional CPB. After carefully reading the whole manuscript, it becomes evident that the role of MiECC is clearly undervalued. Detailed statistical analysis using the surface under the cumulative ranking probabilities indicated that MiECC represented the safer and more effective intervention regarding all-cause mortality and protection from myocardial infarction, cerebral stroke, postoperative atrial fibrillation and renal dysfunction when compared with OPCAB. Even though no significant statistical differences were demonstrated between MiECC and OPCAB, the superiority of MiECC is obvious by the hierarchy of treatments in the probability analysis, which ranked MiECC as the first treatment followed by OPCAB and conventional CPB. Thus, MiECC does not represent a compromise between OPCAB and conventional CPB, but an attractive dominant technique in CABG surgery. These results are consistent with the largest published meta-analysis by Anastasiadis et al. comparing MiECC versus conventional CPB including a total of 2770 patients. A significant decrease in mortality was observed when MiECC was used, which was also associated with reduced risk of postoperative myocardial infarction and neurological events [4]. Similarly, another recent meta-analysis by Benedetto et al. compared MiECC versus OPCAB and resulted in comparable outcomes between these two surgical techniques [5]. As stated in the text, superiority of MiECC observed in the current network meta-analysis, when compared with OPCAB, could be attributed to the fact that MiECC offers the potential for complete revascularization, whereas OPCAB poses a challenge for unexperienced surgeons; especially when distal marginal branches on the lateral and/or posterior wall of the heart need revascularization. This is reflected by a significantly lower number of distal anastomoses performed in OPCAB when compared with conventional CPB. Therefore, taking into consideration the literature published up to date, including the results of the current article, we advocate that MiECC should be integrated in the clinical practice guidelines as a state-of-the-art technique and become a standard practice for perfusion in coronary revascularization surgery.
Resumo:
Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung's radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method's high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of "collateral ventilation" has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results. KEY POINTS Today, surgical and various minimal invasive methods of lung volume reduction are in use. Radiological and nuclear medical examinations are helpful in the evaluation of an appropriate lung area. Imaging can detect periinterventional complications. Reduction of lung volume has not yet been conclusively proven to be effective and is a therapeutical option with little scientific evidence.
Resumo:
The new classification system of uterine anomalies from the European Society of Human Reproduction and Embryology and the European Society for Gynaecological Endoscopy defines T-shaped and tubular-shaped infantilis uteri as 'dysmorphic'. Such malformations have been proven to be associated with poor reproductive performance. A prospective observational study was conducted with 30 infertile women with dysmorphic uterus who underwent the novel Hysteroscopic Outpatient Metroplasty to Expand Dysmorphic Uteri (HOME-DU ) technique. Incisions are made on the uterine walls with a 5 Fr bipolar electrode. The procedure was conducted in outpatients under conscious sedation, using a 5-mm office hysteroscope. The technique was successful in all cases without complications. A net increase of uterine volume was found, as measured at hysteroscopy and three-dimensional transvaginal ultrasound (P < 0.001). Uterine morphology improved in all patients but one. At mean follow-up of 15 months, clinical pregnancy rate was 57% and term delivery rate 65%. These early data support HOME-DU as safe and effective in expanding the volume and normalizing the appearance of the uterine cavity of dysmorphic uteri. Although the cohort was small, pregnancy and live births outcomes were favourable in this poor-prognosis group, implying desirable benefits, which should be compared with other techniques.
Resumo:
OBJECTIVES The aim of this study was to compare the efficacy of amphilimus-eluting stents (AES) with that of everolimus-eluting stents (EES) in patients with diabetes mellitus (DM). BACKGROUND The AES is a polymer-free drug-eluting stent that elutes sirolimus formulated with an amphiphilic carrier from laser-dug wells. This technology could be associated with a high efficacy in patients with DM. METHODS This was a multicenter, randomized, noninferiority trial. Patients with DM medically treated with oral glucose-lowering agents or insulin and de novo coronary lesions were randomized in a 1:1 fashion to AES or EES. The primary endpoint was the neointimal (NI) volume obstruction assessed by optical coherence tomography at 9-month follow-up. RESULTS A total of 116 lesions in 112 patients were randomized. Overall, 40% were insulin-treated patients, with a median HbA1c of 7.3% (interquartile range: 6.7% to 8.0%). The primary endpoint, NI volume obstruction, was 11.97 ± 5.94% for AES versus 16.11 ± 18.18% for EES, meeting the noninferiority criteria (p = 0.0003). Pre-specified subgroup analyses showed a significant interaction between stent type and glycemic control (p = 0.02), with a significant reduction in NI hyperplasia in the AES group in patients with the higher HbA1c (p = 0.03). By quantitative coronary angiography, in-stent late loss was 0.14 ± 0.24 for AES versus 0.24 ± 0.57 mm for EES (p = 0.27), with a larger minimal lumen diameter at follow-up for AES (p = 0.02), mainly driven by 2 cases of occlusive restenosis in the EES group. CONCLUSIONS AES are noninferior to EES for the coronary revascularization of patients with DM. These results suggest a high efficacy of the AES and may support the potential benefit of this stent in patients with DM. (A Randomized Comparison of Reservoir-Based Polymer-Free Amphilimus-Eluting Stents Versus Everolimus-Eluting Stents With Durable Polymer in Patients With Diabetes Mellitus [RESERVOIR]; NCT01710748).
Resumo:
The clinical advantage for protons over conventional high-energy x-rays stems from their unique depth-dose distribution, which delivers essentially no dose beyond the end of range. In order to achieve it, accurate localization of the tumor volume relative to the proton beam is necessary. For cases where the tumor moves with respiration, the resultant dose distribution is sensitive to such motion. One way to reduce uncertainty caused by respiratory motion is to use gated beam delivery. The main goal of this dissertation is to evaluate the respiratory gating technique in both passive scattering and scanning delivery mode. Our hypothesis for the study was that optimization of the parameters of synchrotron operation and respiratory gating can lead to greater efficiency and accuracy of respiratory gating for all modes of synchrotron-based proton treatment delivery. The hypothesis is tested in two specific aims. The specific aim #1 is to assess the efficiency of respiratory-gated proton beam delivery and optimize the synchrotron operations for the gated proton therapy. A simulation study was performed and introduced an efficient synchrotron operation pattern, called variable Tcyc. In addition, the simulation study estimated the efficiency in the respiratory gated scanning beam delivery mode as well. The specific aim #2 is to assess the accuracy of beam delivery in respiratory-gated proton therapy. The simulation study was extended to the passive scattering mode to estimate the quality of pulsed beam delivery to the residual motion for several synchrotron operation patterns with the gating technique. The results showed that variable Tcyc operation can offer good reproducible beam delivery to the residual motion at a certain phase of the motion. For respiratory gated scanning beam delivery, the impact of motion on the dose distributions by scanned beams was investigated by measurement. The results showed the threshold for motion for a variety of scan patterns and the proper number of paintings for normal and respiratory gated beam deliveries. The results of specific aims 1 and 2 provided supporting data for implementation of the respiratory gating beam delivery technique into both passive and scanning modes and the validation of the hypothesis.
Resumo:
Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.