864 resultados para middle pleistocene
Resumo:
Mineral and chemical compositions and physical properties of diatomaceous clayey-siliceous sediments from the Sea of Okhotsk are studied. Accumulation rates of silica are determined. Their compositional model based on silica content is similar to that of Late Jurassic and Olenekian-Middle Anisian cherts from the Sikhote Alin region. Thickness of Holocene siliceous unit and accumulation rates of siliceous deposits depended on bioproductivity in the upper water layer and seafloor topography. Accumulation rates of amorphous SiO2 (0.05-5.7 g/cm**2/ka) and free SiO2 (0.5-11.6 g/cm**2/ka) are minimal on seamounts and maximal in depressions near foothills. These values match accumulation rates of free SiO2 in Triassic and Late Jurassic basins of the Sikhote Alin region (0.33-3 g/cm**2/ka). Comparison of composition and accumulation rates of silica shows that Triassic and Late Jurassic siliceous sequences of Sikhote Alin could accumulate in a marginal marine basin near a continent.
Resumo:
According to the drilling probes of the Deep Waier Drilling Project, Neogene sediments in a tropical area of the Pacific Ocean are divided into 15 zones based on diatoms. The author shows that a unique zonation may be applied for the entire region. Identification of diatoms zones boundaries was conducted through their direct correlation with nannoplancton, radiolarian and foraminiferal zonal sceals. Their ultra-structure and morphological relationship are being analysed. The mode of siliceous accumulation within the equatorial belt differed through the western central and eastern region since the early Miocene and the difference become more evident from the end of Middle Miocene. The distribution of Neogene diatomaceous silt in the tropical area is controlled by the character of gyre-water circulation and agrees with the modern geographical zonation.
Resumo:
The middle Miocene delta18O increase represents a fundamental change in the ocean-atmosphere system which, like late Pleistocene climates, may be related to deepwater circulation patterns. There has been some debate concerning the early to early middle Miocene deepwater circulation patterns. Specifically, recent discussions have focused on the relative roles of Northern Component Water (NCW) production and warm, saline deep water originating in the eastern Tethys. Our time series and time slice reconstructions indicate that NCW and Tethyan outflow water, two relatively warm deepwater masses, were produced from ~20 to 16 Ma. NCW was produced again from 12.5 to 10.5 Ma. Another feature of the early and middle Miocene oceans was the presence of a high delta13C intermediate water mass in the southern hemisphere, which apparently originated in the Southern Ocean. Miocene climates appear to be related directly to deepwater circulation changes. Deep-waters warmed in the early Miocene by ~3°C (?20 to 16 Ma) and cooled by a similar amount during the middle Miocene delta18O increase (14.8 to 12.6 Ma), corresponding to the increase (?20 Ma) and subsequent decrease (~16 Ma) in the production of NCW and Tethyan outflow water. Large (>0.6 per mil), relatively rapid (~0.5 m.y.) delta18O increases in both benthic and planktonic foraminifera (i.e., the Mi zones of Miller et al. (1991a) and Wright and Miller (1992a)) were superimposed in the long-term deepwater temperature changes; they are interpreted as reflecting continental ice growth events. Seven of these m.y. glacial/interglacial cycles have been recognized in the early to middle Miocene. Two of these glacial/interglacial cycles (Mi3 and Mi4) combined with a 2° to 3°C decrease in deepwater temperatures to produce the middle Miocene delta18O shift.
Resumo:
During Ocean Drilling Program Leg 125, a thick sequence of middle Eocene to Pleistocene pelagic sediments, volcanogenic sediments, and predominantly extrusive volcanic rocks was recovered. Calcareous nannofossils were examined from 15 holes at nine sites, but Eocene to Miocene calcareous nannofossils were found only from Holes 782A, 784A, 786A, and 786B. In portions of Holes 786A and 786B, datable nannofossil oozes were found intercalated among volcanic flows. The nannofossil biostratigraphy of these holes indicates the presence of three well-defined hiatuses: within the lower Oligocene, between the upper Oligocene and middle Miocene, and between the middle and upper Miocene. An attempt was made to correlate the magnetochronological data with the first or last occurrences of the following species: Sphenolithus distentus, Reticulofenestra bisecta, Reticulofenestra reticulata, and Cyclicargolithus floridanus abisectus n. comb. The results indicate that the FO of Sphenolithus distentus can extend down to Zone CP16 (34.7 Ma), the LO of Reticulofenestra bisecta best defines the boundary between CP19a and CP19b (23.5 Ma), and the LO of Cyclicargolithus f. abisectus n. comb, can extend up to Subzone CN5a (12.5 Ma). No latest Oligocene Cyclicargolithus f. abisectus n. comb, acme was observed. Cyclicargolithus abisectus is considered a subspecies or variant of Cyclicargolithus floridanus because their LOs coincide. As a consequence of these observations, we have modified the definitions of Bukry's Subzones CP14a, CP14b, and CNla. Analyses of sediment-accumulation rates indicate that the rates increased gradually from the Eocene to Miocene. This is especially evident since the late Miocene in Hole 782A. In different parts of the Izu-Bonin forearc basin, however, the rate is not everywhere the same and appears to vary according to the import of volcanogenic materials.
Resumo:
Seven Ocean Drilling Program (ODP) sites recovered during ODP Leg 177 in the Atlantic sector of the Southern Ocean were analyzed to study the Pleistocene calcareous nannofossil record. Calcareous nannofossil events previously described from intermediate and low latitudes were identified and calibrated with available geomagnetic and stable isotope stratigraphic data. In general, Pleistocene southern high latitude calcareous nannofossil events show synchronicity with those observed from warm and temperate latitudes. The first occurrence (FO) of Emiliania huxleyi and the last occurrence (LO) of Pseudoemiliania lacunosa are observed in marine isotope stages (MIS) 8 and 12, respectively. A reversal in abundance between Gephyrocapsa muellerae and E. huxleyi is observed at MIS 5. MIS 6 is characterized by an increase in G. muellerae and MIS 7 features a dramatic decrease in the proportion of Gephyrocapsa caribbeanica. This latter species began to increase its proportions from MIS 14 to 13. The LO of Reticulofenestra asanoi is observed within subchron C1r.1r and the FO of R. asanoi occurs at the top of C1r.2r. A reentry of medium-sized Gephyrocapsa can be identified in some cores during subchron C1r.1n. The LO of large morphotypes of Gephyrocapsa is well correlated through the studied area, and occurs during the middle-low part of subchron C1r.2r,synchronous with other oceanic regions. The FO of Calcidiscus macintyrei and FO of medium-sized Gephyrocapsa occur in the studied area close to 1.6 Ma.
Resumo:
Late Neogene biostratigraphy of diatoms has been investigated from two sites occupied during Ocean Drilling Program (ODP) Leg 186 off the coast of northeast Japan. A unique aspect of ODP Leg 186 was the installation of two permanent borehole geophysical observatories at the deep-sea terrace along the Japan Trench. The Neogene subsidence history of the forearc was documented from both Sites 1150 and 1151, and Quaternary to middle Miocene (16 Ma) sediments represent a nearly continuous stratigraphic sequence including numerous ash records, especially during the past 9 m.y. Diatoms are found in most samples in variable abundance and in a moderately well preserved state throughout the sequence. The assemblages are characterized consistently by age-diagnostic species of Denticulopsis and Neodenticula found in regions of high surface water productivity typical of middle to high latitudes. The Neogene North Pacific diatom zonation divides the Miocene to Quaternary sequences fundamentally well, except that the latest Miocene through early Pliocene Thalassiosira oestrupii Subzone is not applicable. Miocene and late Pliocene through Pleistocene diatom datum levels that have been proven to be of great stratigraphic utility in the North Pacific Ocean appear to be nearly isochronous within the level of resolution constrained by core catcher sample spacing. The taxonomy and stratigraphy of previously described species determined to be useful across the Miocene/Pliocene boundary have been investigated on the basis of the evolutionary changes within the Thalassiosira trifulta group. The biostratigraphically important forms belonging to the genus Thalassiosira have been illustrated with scanning electron micrographs.
Resumo:
Numerous sapropels and sapropelic strata from Upper Pliocene and Pleistocene hemipelagic sediments of the Tyrrhenian Sea show that intermittent anoxia, possibly related to strongly increased biological productivity, was not restricted to the eastern Mediterranean basins and may be a basin-wide result of Late Pliocene-Pleistocene climatic variability. Even though the sapropel assemblage of the Tyrrhenian Sea clearly originates from multiple processes such as deposition under anoxic conditions or during spikes in surface water productivity and lateral transport of organic-rich suspensates, many "pelagic sapropels" have been recognized. Stratigraphic ages calculated for the organic-rich strata recovered during ODP Leg 107 indicate that the frequency of sapropel formation increased from the lowermost Pleistocene to the base of the Jaramillo magnetic event, coinciding with a period when stable isotope records of planktonic foraminifera indicate the onset of climatic cooling in the Mediterranean. A second, very pronounced peak in sapropel formation occurred in the Middle to Late Pleistocene (0.73-0.26 Ma). Formainifers studied in three high-resolution sample sets suggest that changes in surface-water temperature may have been responsible for establishing anoxic conditions, while salinity differences were not noted in the faunal assemblage. However, comparison of sapropel occurrence at Site 653 with the oxygen isotopic record of planktonic foraminifers established by Thunell et al. (1990, doi:10.2973/odp.proc.sr.107.155.1990) indicates that sapropel occurrences coincide with negative d18O excursions in planktonic foraminifers in thirteen of eighteen sapropels recognized in Hole 653A. A variant of the meltwater hypothesis accepted for sapropel formation in the Late Pleistocene eastern Mediterranean may thus be the cause of several "anoxic events" in the Tyrrhenian as well. Model calculations indicate that the amount of oxygen advection from Western Mediterranean Deep Water exerts the dominant control on the oxygen content in deep water of the Tyrrhenian Sea. Inhibition of deep-water formation in the northern Adriatic and the Balearic Basin by increased meltwater discharge and changing storm patterns during climatic amelioration may thus be responsible for sapropel formation in the Tyrrhenian Sea.
Resumo:
Geophysical surveys of the Mariana forearc, in an area equidistant from the Mariana Trench and the active Mariana Island Arc, revealed a 40-m-deep graben about 13 km northwest of Conical Seamount, a serpentine mud volcano. The graben and its bounding horst blocks are part of a fault zone that strikes northwest-southeast beneath Conical Seamount. One horst block was drilled during Leg 125 of the Ocean Drilling Program (Site 781). Three lithologic units were recovered at Site 781: an upper sedimentary unit, a middle basalt unit, and a lower sedimentary unit. The upper unit, between 0 and 72 mbsf, consists of upper Pliocene to Holocene diatomaceous and radiolarian-bearing silty clay that grades down into vitric silty clay and vitric clayey silt. The middle unit is a Pleistocene vesicular, porphyritic basalt, the top of which corresponds to a high-amplitude reflection on the reflection profiles. The lower unit is a middle to upper (and possibly some lower) Pliocene vitric silty clay and vitric clayey silt similar to the lower part of the upper unit. The thickness of the basalt unit can only be estimated to be between 13 and 25 m because of poor core recovery (28% to 55%). The absence of internal flow structures and the presence of an upper glassy chilled zone and a lower, fine-grained margin suggest that the basalt unit is either a single lava flow or a near-surface sill. The basalt consists of plagioclase phenocrysts with subordinate augite and olivine phenocrysts and of plagioclase-augite-olivine glomerocrysts in a groundmass of plagioclase, augite, olivine, and glass. The basalt is an island arc tholeiite enriched in large-ion-lithophile elements relative to high-field-strength elements, similar to the submarine lavas of the southern arc seamounts. In contrast, volcanic rocks from the active volcanoes on Pagan and Agrigan islands, 100 km to the west of the drill site, are calc-alkaline. The basalt layer, the youngest in-situ igneous layer reported from the Izu-Bonin and Mariana forearcs, is enigmatic because of its location more than 100 km from the active volcanic arc. The sediment layers above and below the basalt unit are late Pliocene in age (about 2.5 Ma) and normally magnetized. The basalt has schlierenlike structures, reverse magnetization, and a K-Ar age of 1.68±0.37 Ma. Thus, the basalt layer is probably a sill fed by magma intruded along a fault zone bounding the horst and graben in the forearc. The geochemistry of the basalt is consistent with a magma source similar to that of the active island arc and from a mantle source above the subducting Pacific plate.
Resumo:
Planktonic foraminifers were studied from 213 samples collected during Leg 112 at 10 sites located on the continental shelf and slope off Peru. Because planktonic foraminifers occur discontinuously downcore, detailed biostratigraphic zonation was not defined. However, it was possible to distinguish early and middle Eocene, early and late Miocene, Pliocene, and Pleistocene sediments on the basis of the planktonic foraminifers. The oldest sediments of Zone P6 of early Eocene age were obtained from the basal part of Hole 688E, which was penetrated to 779.0 m below seafloor (bsf). A biosiliceous facies of the area predominates above the N6-N7 zonal interval of early Miocene age. All sites are within the present coastal upwelling area off Peru, and many of the late Pliocene and Pleistocene assemblages are similar to those that are characteristic of modern upwelling areas. The core samples differ, however, by having a predominance of cold-water elements, such as Neogloboquadrina incompta and N. pachyderma. Warm-water species are prevalent at some horizons in the cores, suggesting shifts of the coastal upwelling centers or warmer climatic events.
Resumo:
Oligocene to Pleistocene bathyal benthic foraminifers at Broken Ridge (Site 754) and Ninetyeast Ridge (Site 756), eastern Indian Ocean, were investigated for then- stratigraphic distribution and their response to paleoceanographic changes. Q-mode factor analysis was applied to relative abundance data of the most abundant benthic foraminifers. At Site 754, seven varimax assemblages were recognized from the upper Oligocene to the Pleistocene: the Gyroidina orbicularis-Rectuvigerina striata Assemblage in the uppermost Oligocene; the Lenticulina spp. Assemblage in the upper Oligocene to lower Miocene, and in lower Miocene to lowermost middle Miocene; the Burseolina cf. pacifica-Cibicidoides mundulus Assemblage in the lower Miocene; the Planulina wuellerstorfi Assemblage in the upper middle Miocene; the Globocassidulina spp. Assemblage in the upper Miocene; the Gavelinopsis lobatulus-Uvigerina proboscidea Assemblage in the Pliocene; and the Ehrenbergina spp. Assemblage in the Pleistocene. The major faunal changes are complex, but exist between the Lenticulina spp. Assemblage and the P. wuellerstorfi Assemblage at ~13.8 Ma, and between the Ehrenbergina spp. Assemblage and the G. lobatulus Assemblage at ~5 Ma. The development of the P. wuellerstorfi and Globocassidulina spp. Assemblages after 13.8 Ma is correlated with the decrease in temperature of the intermediate waters of the ocean, in turn related to Antarctic glacial expansion. The faunal changes at ~5 Ma are related to the development of low oxygen intermediate water, formed in the presence of a strong thermocline. At Site 756, six varimax assemblages are distributed as follows: the Cibicidoides cf. mundulus-Oridorsalis umbonatus Assemblage in the lower Oligocene; the Epistominella umbonifera-Cibicidoides mundulus Assemblage from the upper Oligocene to the lower Miocene; the Cibicidoides mundulus-Burseolinapacifica Assemblage from lower Miocene to the lower middle Miocene; the Globocassidulina spp. Assemblage from the upper lower Miocene to the Pliocene; the Uvigerina proboscidea Assemblage in the upper Miocene and the Pliocene; and the Globocassidulina sp. D Assemblage in the Pliocene. The main faunal change at this site is between the E. umbonifera Assemblage and the Globocassidulina spp. Assemblage, at ~17.1 Ma. The timing of this faunal change is coeval with faunal changes in the North Atlantic and the Pacific. The change is related to a change in bottom water characteristics caused by an increased influence of carbonate corrosive water from the Antarctic source region, and a change in surface productivity. A low oxygen event at Site 756, which started at about 7.3 Ma, occurred about 2.3 m.y. before that at Site 754. The different response to global paleoceanographic changes is not yet explained, but may be due to the difference of marine topography and the degree of upwelling