966 resultados para microbial ecology
Resumo:
Although deposit-feeding macrofauna consume and digest sedimentary bacteria, it is unclear whether feeding rates and digestion efficiencies are high enough to significantly impact the composition and abundance of bacteria in marine sediments. It is likely that both feeding rates and efficiency of digestion vary markedly through space and time. We used a turbidimetric assay to compare the rate of bacteriolysis by digestive fluids collected seasonally from the deposit-feeding polychaete Arenicola marina. Under standardized, experimental conditions, bacteriolytic rates represent concentrations of lytic agents. This concentration was found to vary significantly throughout the year (p = 0.001), showing greater than a 2x range. Lytic agent concentration was positively correlated with bioavailable amino acid concentrations in the surface sediment (r = 0.85, p = 0.03) but showed no apparent relationship to other proxies for food resources (e.g, chl a), sediment temperature, or gut throughput time. In vitro, temperature has been shown to have a strong positive influence on bacteriolytic rate. Temperature has no influence, however, on the in situ concentration of lytic agent in gut fluids, thus it appears that compensation for this temperature dependence is unimportant. These findings, combined with previous kinetics studies with A. marina gut fluids, predict that the quantitative influence of deposit feeding on the microbial ecology of sediments will exhibit clear seasonal variation.
Resumo:
Dental caries is the most common chronic disease worldwide. It is characterized by the demineralization of tooth enamel caused by acid produced by cariogenic dental bacteria growing on tooth surfaces, termed bacterial biofilms. Cariogenesis is a complex biological process that is influence by multiple factors and is not attributed to a sole causative agent. Instead, caries is associated with multispecies microbial biofilm communities composed of some bacterial species that directly influence the development of a caries lesion and other species that are seemingly benign but must contribute to the community in an uncharacterized way. Clinical analysis of dental caries and its microbial populations is challenging due to many factors including low sensitivity of clinical measurement tools, variability in saliva chemistry, and variation in the microbiota. Our laboratory has developed an in vitro anaerobic biofilm model for dental carries to facilitate both clinical and basic research-based analyses of the multispecies dynamics and individual factors that contribute to cariogenicity. The rational for development of this system was to improve upon the current models that lack key elements. This model places an emphasis on physiological relevance and ease of maintenance and reproducibility. The uniqueness of the model is based on integrating four critical elements: 1) a biofilm community composed of four distinct and representative species typically associated with dental caries, 2) a semi-defined synthetic growth medium designed to mimic saliva, 3) physiologically relevant biofilm growth substrates, and 4) a novel biofilm reactor device designed to facilitate the maintenance and analysis. Specifically, human tooth sections or hydroxyapatite discs embedded into poly(methyl methacrylate) (PMMA) discs are incubated for an initial 24 hr in a static inverted removable substrate (SIRS) biofilm reactor at 37°C under anaerobic conditions in artificial saliva (CAMM) without sucrose in the presence of 1 X 106 cells/ml of each Actinomyces odontolyticus, Fusobacterium nucleatum, Streptococcus mutans, and Veillonella dispar. During days 2 and 3 the samples are maintained continually in CAMM with various exposures to 0.2% sucrose; all of the discs are transferred into fresh medium every 24 hr. To validate that this model is an appropriate in vitro representation of a caries-associated multispecies biofilm, research aims were designed to test the following overarching hypothesis: an in vitro anaerobic biofilm composed of four species (S. mutans, V. dispar, A. odontolyticus, and F. nucleatum) will form a stable biofilm with a community profile that changes in response to environmental conditions and exhibits a cariogenic potential. For these experiments the biofilms as described above were exposed on days 2 and 3 to either CAMM lacking sucrose (no sucrose), CAMM with 0.2% sucrose (constant sucrose), or were transferred twice a day for 1 hr each time into 0.2% sucrose (intermittent sucrose). Four types of analysis were performed: 1) fluorescence microscopy of biofilms stained with Syto 9 and hexidium idodine to determine the biofilm architecture, 2) quantitative PCR (qPCR) to determine the cell number of each species per cm2, 3) vertical scanning interferometry (VSI) to determine the cariogenic potential of the biofilms, and 4) tomographic pH imaging using radiometric fluorescence microscopy after exposure to pH sensitive nanoparticles to measure the micro-environmental pH. The qualitative and quantitative results reveal the expected dynamics of the community profile when exposed to different sucrose conditions and the cariogenic potential of this in vitro four-species anaerobic biofilm model, thus confirming its usefulness for future analysis of primary and secondary dental caries.
Feeding, growth and grazing rates of phototrophic red-tide Dinoflagellates determined experimentally
Resumo:
The HCMR_SES_LAGRANGIAN_GR2_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during October 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Bacterial production was estimated by the 3H-leucine method (Kirchman et al. 1986, Kirchman 1993). At each depth, duplicate samples and a control were incubated with 20 nM L-[4,5 3H]-leucine. Samples were incubated in the dark, at in situ temperature.
Resumo:
The dataset is based on samples collected in the framework of the project SESAME, in the Ionian, Libyan and Aegean Sea during March- April 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column. Bacterial production was estimated by the 3H-leucine method (Kirchman et al. 1986, Kirchman 1993). At each depth, duplicate samples and a control were incubated with 20 nM L-[4,5 3H]-leucine. Samples were incubated in the dark, at in situ temperature.
Resumo:
During spring, ammonium oxidation and nitrite oxidation rates were measured in the NW basin of the Mediterranean Sea, from mesotrophic sites (Ligurian Sea and Gulf of Lions) to oligotrophic sites (Balearic Islands). Nitrification rates (average values for 37 measurements) ranged from 72 to 144 nmol of N oxidised/l/d, except in the Rhône River plume area where the rates increased to 264-504 nmol/l/d because of the riverine inputs of nitrogen. Maximal rates were located around the peak of nitrite within the nitracline at about 40 to 60 m and just above the phosphacline. At 1 station, relatively high values of nitrification (50 to 130 nmol/l/d) were also measured deep in the water column (240 m). Day-to-day variations were measured demonstrating the response within a few hours to hydrological stress (wind-induced mixing of the water column) and showing the role of hydrological characteristics on the distribution of nitrification rates. Because of the homogenous temperature (13°C) in the Mediterranean Sea, the spatial (geographical and vertical) fluctuations of nitrifying rates were linked to the presence of substrate due to mineralisation processes and/or Rhône River inputs. We estimate the contribution of nitrate produced by nitrification to the N demand of phytoplankton to range from 16% at mesotrophic to 61% at oligotrophic stations.