965 resultados para methionine synthase reductase
Resumo:
The fungus Lentinus strigosus (Pegler 1983) (Polyporaceae, basidiomycete) was selected in a screen for inhibitory activity on Trypanosoma cruzi trypanothione reductase (TR). The crude extract of L. strigosus was able to completely inhibit TR at 20 µg/ml. Two triquinane sesquiterpenoids (dihydrohypnophilin and hypnophilin), in addition to two panepoxydol derivatives (neopanepoxydol and panepoxydone), were isolated using a bioassay-guided fractionation protocol. Hypnophilin and panepoxydone displayed IC50 values of 0.8 and 38.9 µM in the TR assay, respectively, while the other two compounds were inactive. The activity of hypnophilin was confirmed in a secondary assay with the intracellular amastigote forms of T. cruzi, in which it presented an IC50 value of 2.5 µ M. Quantitative flow cytometry experiments demonstrated that hypnophilin at 4 µM also reduced the proliferation of human peripheral blood monocluear cells (PBMC) stimulated with phytohemaglutinin, without any apparent interference on the viability of lymphocytes and monocytes. As the host immune response plays a pivotal role in the adverse events triggered by antigen release during treatment with trypanocidal drugs, the ability of hypnophilin to kill the intracellular forms of T. cruzi while modulating human PBMC proliferation suggests that this terpenoid may be a promising prototype for the development of new chemotherapeutical agents for Chagas disease.
Resumo:
The susceptibility of 49 Mycobacterium tuberculosis clinical isolates to isoniazid (INH) and rifampisin (RIF) (28 multi-drug resistant-tuberculosis samples) was determined by a nitrate reductase assay (NRA) on blood agar. Agreement between the NRA and other testing methods was found to be 93.8% for both INH and RIF. The sensitivity, specificity, positive predictive value and negative predictive value for INH were 92.8%, 94.2%, 86.6% and 97%, respectively. The sensitivity, specificity, positive predictive value and negative predictive value for RIF were 90.4%, 96.4%, 95% and 93.1%. In conclusion, we show here that blood agar can be used effectively for the NRA test.
Resumo:
The microplate nitrate reductase assay (MNRA) and the rezasurin microtitre assay (REMA) were used for the susceptibility testing of 73 clinical isolates and the results were compared with those that were obtained using the Bactec 460 TB and Bactec MGIT 960 systems. The REMA and the MNRA were performed in 96-well plates. For the REMA, the concentrations of isoniazid (INH) and rifampicin (RIF) ranged from 1.0-0.01 µg/mL and 2.0-0.03 µg/mL, respectively. For the MNRA, the INH concentration was between 1.0-0.03 µg/mL and the RIF concentration was between 2.0-0.06 µg/mL. For the MNRA, the sensitivity, specificity, positive predictive value, negative predictive value and INH/RIF agreement were 100/95.6, 97.6/100, 96.8/100, 100/98 and 98.6/98.6, respectively, and for the REMA, they were 100/91.3, 90.4/100, 88.5/100, 100/96.1 and 94.5/97.2, respectively. Our data suggest that these two rapid, low-cost methods may be inexpensive, alternative assays for the rapid detection of multidrug resistant tuberculosis in low-income countries.
Resumo:
The goal of the present study was to examine the viscoelastic properties of the carotid artery in genetically identical rats exposed to similar levels of blood pressure sustained by different mechanisms. Eight-week old male Wistar rats were examined 2 weeks after renal artery clipping (two-kidney, one clip [2K1C] Goldblatt rats, n = 53) or sham operation (n = 49). One half of the 2K1C and sham rats received the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 1.48 mmol/L) in their drinking water for 2 weeks after the surgical procedure. Mean blood pressure increased significantly in the 2K1C-water (182 mm Hg), 2K1C-L-NAME (197 mm Hg), and sham-L-NAME (170 mm Hg) rats compared with the sham-water rats (127 mm Hg). Plasma renin activity was not altered by L-NAME but significantly enhanced after renal artery clipping. A significant and similar increase in the cross-sectional area of the carotid artery was observed in L-NAME and vehicle-treated 2K1C rats. L-NAME per se did not modify cross-sectional area in the sham rats. There was a significant upward shift of the distensibility-pressure curve in the L-NAME- and vehicle-treated 2K1C rats compared with the sham-L-NAME rats. L-NAME treatment did not alter the distensibility-pressure curve in the 2K1C rats. These results demonstrate that the mechanisms responsible for artery wall hypertrophy in renovascular hypertension are accompanied by an increase in arterial distensibility that is not dependent on the synthesis of nitric oxide.
Resumo:
Murine macrophages activated by interferon-gamma and lipopolysaccharide become leishmanicidal through a process involving L-arginine-derived nitrogen oxidation products. Both nitrite secretion and parasite killing by activated macrophages were inhibited by 3-amino-1,2,4-triazole as well as the related compound, 3-amino-1,2,4-triazine. Moreover, NO synthase activity in cytosolic extracts of activated cells was inhibited by both compounds. 4-amino-1,2,4-triazole, an isomer of 3-amino-1,2,4-triazole, was without effect. Our results suggest that besides its known inhibitory effect on catalases and peroxidases, 3-amino-1,2,4-triazole is an inhibitor of NO synthase. The resemblance between the tautomeric form of 3-amino-1,2,4-triazole and the guanidino group of L-arginine, the natural substrate for NO synthase, might be responsible for the observed inhibition.
Resumo:
A maize (Zea mays L. cv LG 11) root homogenate was prepared and centrifuged to sediment the mitochondria. The pellet (6 KP) and the supernatant (6 KS) were collected and fractionated on linear sucrose density gradients. Marker enzymes were used to study the distribution of the different cell membranes in the gradients. The distribution of the ATP- and pyrophosphate-dependent proton pumping activities was similar after 3 hours of centrifugation of the 6 KS or the 6 KP fraction. The pumps were clearly separated from the mitochondrial marker cytochrome c oxidase and the plasmalemma marker UDP-glucose-sterolglucosyl-transferase. The pyrophosphate-dependent proton pump might be associated with the tonoplast, as the ATP-dependent pump, despite the lack of a specific marker for this membrane. However, under all the conditions tested, the two pumps overlapped the Golgi markers latent UDPase and glucan synthase I and the ER marker NADH-cytochrome c reductase. It is therefore not possible to exclude the presence of proton pumping activities on the Golgi or the ER of maize root cells. The two pumps (but especially the pyrophosphate-dependent one) were more active (or more abundant) in the tip than in the basal part of maize roots, indicating that these activities might be important in growth processes.
Resumo:
INTRODUCTION: The endogenous opioid system has been reported to interact with both the cardiac sympathetic and renin-angiotensin systems in exerting a local regulatory action on the heart. The goal of this investigation was to examine how cardiac levels of enkephalin production are altered in the development of normotensive primary hypertrophy due to elevated intra-cardiac angiotensin II (Ang II) production. METHODS: Atrial and ventricular methionine-enkephalin (ME) levels were measured by quantitative radioimmunoassay in 14 and 28-week-old male transgenic mice (TG1306/1R) and control mice. The TG1306/1R exhibit cardiac specific Ang II overexpression and cardiac hypertrophy, but not hypertension. RESULTS: TG1306/1R mice had significantly higher heart/body weight ratios (15-20%) than control littermates at both 14 (p=0.02) and 28 weeks (p=0.04). Relative to controls, ME content was significantly elevated (approximately two-fold) in atria and ventricles in the older 28-week TG1306/1R mice only. A significant inverse correlation between heart size and ME level was observed for 28-week TG1306/1R only. CONCLUSIONS: We have provided evidence that a marked elevation of myocardial enkephalin level is observed in the established (but not early) phase of cardiac hypertrophy associated with cardiac-specific Ang II-overexpression. This study identifies a potentially important relationship between two endogenous peptidergic signalling systems involved in the regulation of growth and function of the hypertrophic heart.
Resumo:
OBJECTIVE: To investigate the hemodynamic effects of L-canavanine (an inhibitor of inducible, but not of constitutive, nitric oxide synthase) in endotoxic shock. DESIGN: Controlled, randomized, experimental study. SETTING: Animal laboratory. SUBJECTS: Wistar rats. INTERVENTIONS: Rats were anesthetized with pentobarbital, and hemodynamically monitored. One hour after an intravenous challenge with 5 mg/kg of Escherichia coli endotoxin, the rats were randomized to receive a continuous infusion of either L-canavanine (20 mg/kg/hr; n = 8) or vehicle only (isotonic saline, n = 11). In all animals, the infusion was given over 5 hrs at a rate of 2 mL/kg/hr. These experiments were repeated in additional rats challenged with isotonic saline instead of endotoxin (sham experiments). MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, heart rate, thermodilution cardiac output, central venous pressure, mean systemic filling pressure, urine output, arterial blood gases, blood lactate concentration, and hematocrit were measured. In sham experiments, hemodynamic stability was maintained throughout and L-canavanine had no detectable effect. Animals challenged with endotoxin and not treated with L-canavanine developed progressive hypotension and low cardiac output. After 6 hrs of endotoxemia, both central venous pressure and mean systemic filling pressure were significantly below their baseline values, indicating relative hypovolemia as the main determinant of reduced cardiac output. In endotoxemic animals treated with L-canavanine, hypotension was less marked, while cardiac output, central venous pressure, and mean systemic filling pressure were maintained throughout the experiment. L-canavanine had no effect on the time-course of hematocrit. L-canavanine significantly increased urine output and reduced the severity of lactic acidosis. CONCLUSIONS: Six hours after an endotoxin challenge in rats, low cardiac output develops, which appears to be primarily related to relative hypovolemia. L-canavanine, a selective inhibitor of the inducible nitric oxide synthase, increases the mean systemic filling pressure, thereby improving venous return, under these conditions.
Resumo:
This study aims to define the cellular roles of methionine sulfoxide reductases A and B, evolutionarily highly conserved enzymes able to repair oxidized methionines in proteins. msrA and msrB mutants were exposed to an internal oxidative stress by growing them under aerobic conditions on glycerol. Interestingly, the msr mutants behave completely differently under these conditions. The msrA mutant is inhibited, whereas the msrB mutant is stimulated in its growth in comparison with the parent strain. Glycerol can be catabolized by either the GlpK or DhaK pathways in Enterococcus faecalis. Our results strongly suggest that in the msrA mutant, glycerol is catabolized via the GlpK pathway leading to increased synthesis of H2O2, which accumulates to concentrations inhibitory to growth in comparison with the parent strain. In contrast in the msrB mutant, glycerol is metabolized via the DhaK pathway which is not accompanied by the synthesis of H2O2. The molecular basis for the differences in glycerol flux seems to be due to expression differences of the two glycerol-catabolic operons in the msr mutants.
Resumo:
BACKGROUND: Pneumocystis jirovecii dihydropteroate synthase (DHPS) mutations are associated with failure of prophylaxis with sulfa drugs. This retrospective study sought to better understand the geographical variation in the prevalence of these mutations. METHODS: DHPS polymorphisms in 394 clinical specimens from immunosuppressed patients who received a diagnosis of P. jirovecii pneumonia and who were hospitalized in 3 European cities were examined using polymerase chain reaction (PCR) single-strand conformation polymorphism. Demographic and clinical characteristics were obtained from patients' medical charts. RESULTS: Of the 394 patients, 79 (20%) were infected with a P. jirovecii strain harboring one or both of the previously reported DHPS mutations. The prevalence of DHPS mutations was significantly higher in Lyon than in Switzerland (33.0% vs 7.5%; P < .001). The proportion of patients with no evidence of sulfa exposure who harbored a mutant P. jirovecii DHPS genotype was significantly higher in Lyon than in Switzerland (29.7% vs 3.0%; P < .001). During the study period in Lyon, in contrast to the Swiss hospitals, measures to prevent dissemination of P. jirovecii from patients with P. jirovecii pneumonia were generally not implemented, and most patients received suboptimal prophylaxis, the failure of which was strictly associated with mutated P. jirovecii. Thus, nosocomial interhuman transmission of mutated strains directly or indirectly from other individuals in whom selection of mutants occurred may explain the high proportion of mutations without sulfa exposure in Lyon. CONCLUSIONS: Interhuman transmission of P. jirovecii, rather than selection pressure by sulfa prophylaxis, may play a predominant role in the geographical variation in the prevalence in the P. jirovecii DHPS mutations.
Resumo:
Nitric oxide (NO) plays a major role in the regulation of cardiovascular and metabolic homeostasis, as evidenced by insulin resistance and arterial hypertension in endothelial NO synthase (eNOS) null mice. Extrapolation of these findings to humans is difficult, however, because eNOS gene deficiency has not been reported. eNOS gene polymorphism and impaired NO synthesis, however, have been reported in several cardiovascular disease states and could predispose to insulin resistance. High-fat diet induces insulin resistance and arterial hypertension in normal mice. To test whether partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension during metabolic stress, we examined effects of an 8-week high-fat diet on insulin sensitivity (euglycemic clamp) and arterial pressure in eNOS(+/-) mice. When fed a normal diet, these mice had normal insulin sensitivity and were normotensive. When fed a high-fat diet, however, eNOS(+/-) mice developed exaggerated arterial hypertension and had fasting hyperinsulinemia and a 35% lower insulin-stimulated glucose utilization than control mice. The partial deletion of the eNOS gene does not alter insulin sensitivity or blood pressure in mice. When challenged with nutritional stress, however, partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension, providing further evidence for the importance of this gene in linking metabolic and cardiovascular disease.
Resumo:
Molecular mechanisms by which exercise exerts cardiovascular benefits are poorly understood. Exercise-induced increase of endothelial NO synthase (eNOS) phosphorylation through the protein kinase Akt has been shown to be a key mechanism underlying the beneficial effect of exercise in coronary artery disease patients. We examined whether this protective pathway might also be activated in long-term-exercised healthy mice. C57BL/6 wild-type mice swam for 24 weeks. A group of sedentary animals were used as controls. Aortic levels of total protein kinase Akt (protein kinase B), phosphorylated Akt at ser473 (p-Akt), total eNOS, phosphorylated eNOS at Ser1177 (p-eNOS), and PECAM-1 (platelet endothelial cell adhesion molecule-1) were assessed by Western blotting. Protein expressions of Akt, p-Akt, eNOS, p-eNOS, and PECAM-1 were not modulated by 24 weeks of exercise. The Akt-dependent eNOS phosphorylation did not seem to be a primary molecular adaptation in response to long-term exercise in healthy mice.
Resumo:
Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37-1.73]; combined P=2.58 · 10(-13)). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25-1.44; P=1.032 · 10(-14)). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16-3.66) for systolic and 1.40 (95% CI: 0.25-2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.
Resumo:
Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.
Resumo:
: To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*4001 carriage with HIV lipodystrophy syndrome (HALS). 336 patients, 187 with HALS and 149 without HALS, and 72 controls were recruited. HALS was associated with the presence of a low expression, thymidylate synthase (TS) genotype polymorphism. Methylene-tetrahydrofolate reductase (MTHFR) gene polymorphisms and HLA-B*4001 carriage were not associated with HALS or d4T-TP intracellular levels. In conclusion HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*4001 carriage.