968 resultados para matrix effect
Resumo:
Fine particles of barium ferrite (BaFe12O19) were synthesized by the conventional ceramic technique. These materials were then characterized by the X-ray diffraction method and incorporated in the natural rubber matrix according to a specific receipe for various loadings of ferrite. The rubber ferrite composites (RFC) thus obtained have several applications, and have the advantage of molding into complex shapes. For applications such as microwave absorbers, these composites should have an appropriate dielectric strength with the required mechanical and magnetic properties. The N330 (HAF) carbon black has been added to these RFCs for various loadings to modify the dielectric and mechanical properties. In this article we report the effect of carbon black on the mechanical and dielectric properties of these RFCs. Both the mechanical and dielectric properties can be enhanced by the addition of an appropriate amount of carbon black
Resumo:
Nickel–rubber nanocomposites were synthesized by incorporating ferromagnetic nickel nanoparticles in a natural rubber as well as neoprene rubber matrix. Complex dielectric permittivity and magnetic permeability of these composites were evaluated in the X-band microwave frequencies at room temperature using cavity perturbation technique. The dielectric loss in natural rubber is smaller compared to neoprene rubber. A steady increase in the dielectric permittivity is observed with increase in the content of nickel in both the composites. The magnetic permeability exhibits a steady decrease with increase in frequency and magnetic loss shows a relaxation at 8 GHz. The suitability of these composites as microwave absorbers is modeled based on the reflection loss which is dependant on the real and imaginary components of the complex dielectric permittivity and magnetic permeability.
Resumo:
In symmetric block ciphers, substitution and diffusion operations are performed in multiple rounds using sub-keys generated from a key generation procedure called key schedule. The key schedule plays a very important role in deciding the security of block ciphers. In this paper we propose a complex key generation procedure, based on matrix manipulations, which could be introduced in symmetric ciphers. The proposed key generation procedure offers two advantages. First, the procedure is simple to implement and has complexity in determining the sub-keys through crypt analysis. Secondly, the procedure produces a strong avalanche effect making many bits in the output block of a cipher to undergo changes with one bit change in the secret key. As a case study, matrix based key generation procedure has been introduced in Advanced Encryption Standard (AES) by replacing the existing key schedule of AES. The key avalanche and differential key propagation produced in AES have been observed. The paper describes the matrix based key generation procedure and the enhanced key avalanche and differential key propagation produced in AES. It has been shown that, the key avalanche effect and differential key propagation characteristics of AES have improved by replacing the AES key schedule with the Matrix based key generation procedure
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.
Resumo:
Oxidative modification of low-density lipoprotein (LDL) plays an important role in the initiation and progression of atherosclerosis. It has been proposed that the biological action of oxidized LDL (ox-LDL) may be partially attributed to its effect on a shift of the pattern of gene expression in endothelial cells. To examine the transcriptional response to ox-LDL, we applied cDNA array technology to cultured primary human endothelial cells challenged with oxidized human LDL. A twofold or greater difference in the expression of a particular gene was considered a significant difference in transcript abundance. Seventy-eight of the 588 genes analyzed were differentially expressed in response to the treatment. Ox-LDL significantly affected the expression of genes encoding for transcription factors, cell receptors, growth factors, adhesion molecules, extracellular matrix proteins, and enzymes involved in cholesterol metabolism. The alteration of the expression pattern of several genes was substantiated post hoc using RT-PCR. The experimental strategy identified several novel ox-LDL-sensitive genes associated with a "response to injury" providing a conceptual background to be utilized for future studies addressing the molecular basis of the early stages of atherogenesis.
Resumo:
A combined mathematical model for predicting heat penetration and microbial inactivation in a solid body heated by conduction was tested experimentally by inoculating agar cylinders with Salmonella typhimurium or Enterococcus faecium and heating in a water bath. Regions of growth where bacteria had survived after heating were measured by image analysis and compared with model predictions. Visualisation of the regions of growth was improved by incorporating chromogenic metabolic indicators into the agar. Preliminary tests established that the model performed satisfactorily with both test organisms and with cylinders of different diameter. The model was then used in simulation studies in which the parameters D, z, inoculum size, cylinder diameter and heating temperature were systematically varied. These simulations showed that the biological variables D, z and inoculum size had a relatively small effect on the time needed to eliminate bacteria at the cylinder axis in comparison with the physical variables heating temperature and cylinder diameter, which had a much greater relative effect. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Vitamin E absorption requires the presence of fat; however, limited information exists on the influence of fat quantity on optimal absorption. In the present study we compared the absorption of stable-isotope-labelled vitamin E following meals of varying fat content and source. In a randomised four-way cross-over study, eight healthy individuals consumed a capsule containing 150 mg H-2-labelled RRR-alpha-tocopheryl acetate with a test meal of toast with butter (17.5 g fat), cereal with full-fat milk (17.5 g fat), cereal with semi-skimmed milk (2.7 g fat) and water (0g fat). Blood was taken at 0, 0.5, 1, 1.5, 2, 3, 6 and 9 h following ingestion, chylomicrons were isolated, and H-2-labelled alpha-tocopherol was analysed in the chylomicron and plasma samples. There was a significant time (P<0.001) and treatment effect (P<0.001) in H-2-labelled alpha-tocopherol concentration in both chylomicrons and plasma between the test meals. H-2-labelled alpha-tocopherol concentration was significantly greater with the higher-fat toast and butter meal compared with the low-fat cereal meal or water (P< 0.001), and a trend towards greater concentration compared with the high-fat cereal meal (P= 0.065). There was significantly greater H-2-labelled α-tocopherol concentration with the high-fat cereal meal compared with the low-fat cereal meal (P< 0.05). The H-2-labelled alpha-tocopherol concentration following either the low-fat cereal meal or water was low. These results demonstrate that both the amount of fat and the food matrix influence vitamin E absorption. These factors should be considered by consumers and for future vitamin E intervention studies.
Resumo:
Green malt was kilned at 95 degrees C following two regimens: a standard regimen (SKR) and a rapid regimen (RKR). Both resulting malts were treated further in a tray dryer heated to 120 degrees C, as was green malt previously dried to 65 degrees C (TDR). Each regimen was monitored by determining the color, antioxidant activity (by both ABTS(center dot+) and FRAP methods), and polyphenolic profile. SKR and RKR malts exhibited decreased L* and increased b* values above approximately 80 degrees C. TDR malts changed significantly less, and color did not develop until 110 degrees C, implying that different chemical reactions lead to color in those malts. Antioxidant activity increased progressively with each regimen, although with TDR malts this became significant only at 110-120 degrees C. The RKR malt ABTS(center dot+) values were higher than those of the SKR malt. The main phenolics, that is, ferulic, p-coumaric, and vanillic acids, were monitored throughout heating. Ferulic acid levels increased upon heating to 80 degrees C for SKR and to 70 degrees C for RKR, with subsequent decreases. However, the levels for TDR malts did not increase significantly. The increase in free phenolics early in kilning could be due to enzymatic release of bound phenolics and/or easier extractability due to changes in the matrix. The differences between the kilning regimens used suggest that further modification of the regimens could lead to greater release of bound phenolics with consequent beneficial effects on flavor stability in beer and, more generally, on human health.
Resumo:
Cloud imagery is not currently used in numerical weather prediction (NWP) to extract the type of dynamical information that experienced forecasters have extracted subjectively for many years. For example, rapidly developing mid-latitude cyclones have characteristic signatures in the cloud imagery that are most fully appreciated from a sequence of images rather than from a single image. The Met Office is currently developing a technique to extract dynamical development information from satellite imagery using their full incremental 4D-Var (four-dimensional variational data assimilation) system. We investigate a simplified form of this technique in a fully nonlinear framework. We convert information on the vertical wind field, w(z), and profiles of temperature, T(z, t), and total water content, qt (z, t), as functions of height, z, and time, t, to a single brightness temperature by defining a 2D (vertical and time) variational assimilation testbed. The profiles of w, T and qt are updated using a simple vertical advection scheme. We define a basic cloud scheme to obtain the fractional cloud amount and, when combined with the temperature field, we convert this information into a brightness temperature, having developed a simple radiative transfer scheme. With the exception of some matrix inversion routines, all our code is developed from scratch. Throughout the development process we test all aspects of our 2D assimilation system, and then run identical twin experiments to try and recover information on the vertical velocity, from a sequence of observations of brightness temperature. This thesis contains a comprehensive description of our nonlinear models and assimilation system, and the first experimental results.
Resumo:
The disadvantage of the majority of data assimilation schemes is the assumption that the conditional probability density function of the state of the system given the observations [posterior probability density function (PDF)] is distributed either locally or globally as a Gaussian. The advantage, however, is that through various different mechanisms they ensure initial conditions that are predominantly in linear balance and therefore spurious gravity wave generation is suppressed. The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added to the model equations and means the advantage of the traditional data assimilation schemes, in generating predominantly balanced initial conditions, is no longer guaranteed. This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the model error covariance matrix imposes geostrophic balance, then each additional term required by the equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure the particles are in the locality of the observations has little effect on gravity waves and actually induces a reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity wave energy and so has potential for application in real high-dimensional geophysical applications.
Resumo:
The aim of this study was to evaluate the effects of inulin as fat replacer on short dough biscuits and their corresponding doughs. A control formulation, with no replacement, and four formulations in which 10, 20, 30, and 40 % of shortening was replaced by inulin were studied. In the dough, shortening was observed surrounding flour components. At higher fat replacement levels, flour was more available for hydration leading to significant (P<0.05) harder doughs: from 2.76 (0.12)N in 10 % fat-replaced biscuits to 5.81 (1.56)N in 30 % fat-replaced ones. Biscuit structure was more continuous than dough structure. A continuous fat layer coated the matrix surface, where starch granules were embedded. In general, weight loss during baking and water activity decreased significantly (P<0.05) as fat replacement increased. Biscuit dimensions and aeration decreased when fat replacement increased, e.g., width gain was +1.20 mm in 10 fat-replaced biscuits and only +0.32 mm in 40 % fat-replaced ones. Panelist found biscuits with 20 % of fat replacement slightly harder than control biscuits. It can be concluded that shortening may be partially replaced, up to 20 %, with inulin. These low fat biscuits are similar than the control biscuits, and they can have additional health benefits derived from inulin presence.
Resumo:
Cell migration is a highly coordinated process and any aberration in the regulatory mechanisms could result in pathological conditions such as cancer. The ability of cancer cells to disseminate to distant sites within the body has made it difficult to treat. Cancer cells also exhibit plasticity that makes them able to interconvert from an elongated, mesenchymal morphology to an amoeboid blebbing form under different physiological conditions. Blebs are spherical membrane protrusions formed by actomyosin-mediated contractility of cortical actin resulting in increased hydrostatic pressure and subsequent detachment of the membrane from the cortex. Tumour cells use blebbing as an alternative mode of migration by squeezing through preexisting gaps in the ECM, and bleb formation is believed to be mediated by the Rho-ROCK signaling pathway. However, the involvement of transmembrane water and ion channels in cell blebbing has not been examined. In the present study, the role of the transmembrane water channels, aquaporins, transmembrane ion transporters and lipid signaling enzymes in the regulation of blebbing was investigated. Using 3D matrigel matrix as an in vitro model to mimic normal extracellular matrix, and a combination of confocal and time-lapse microscopy, it was found that AQP1 knockdown by siRNA ablated blebbing of HT1080 and ACHN cells, and overexpression of AQP1-GFP not only significantly increased bleb size with a corresponding decrease in bleb numbers, but also induced bleb formation in non-blebbing cell lines. Importantly, AQP1 overexpression reduces bleb lifespan due to faster bleb retraction. This novel finding of AQP1-facilitated bleb retraction requires the activity of the Na+/H+ pump as inhibition of the ion transporter, which was found localized to intracellular vesicles, blocked bleb retraction in both cell lines. This study also demonstrated that a differential regulation of cell blebbing by AQP isoforms exists as knockdown of AQP5 had no effect on bleb formation. Data from this study also demonstrates that the lipid signaling PLD2 signals through PA in the LPA-LPAR-Rho-ROCK axis to positively regulate bleb formation in both cell lines. Taken together, this work provides a novel role of AQP1 and Na+/H+ pump in regulation of cell blebbing, and this could be exploited in the development of new therapy to treat cancer.
Resumo:
The purpose of this study was to evaluate the effect of a single application of antimicrobial photodynamic therapy (aPDT) on microbiological profile and cytokine pattern in dogs. Periodontal disease was induced by placing 3.0 silk ligatures around the mandibular pre-molars bilaterally during 8 weeks. The dogs were randomly treated with aPDT using a dye/laser system, scaling and root planning (SRP), or with the association of treatments (SRP + aPDT). Plaque samples were collected at baseline, 1, 3, and 4 weeks, and the mean counts of 40 species were determined using DNA-DNA hybridization. Gingival biopsies were removed and the expression of tumor necrosis factor alpha (TNF-alpha), receptor activator of NF-kB ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase (MMP-1), interleukin (IL) 6, IL-10 and total bacterial load by analysis of 16 S rRNA gene were evaluated through real-time PCR. The results shows that the levels of the majority of the species were reduced 1 week post-therapy for all treatments, however, an increase in counts of Prevotella intermedia (p = 0.00), Prevotella. nigrescens (p = 0.00) and Tannerella forsythia (p = 0.00) was observed for aPDT and SRP + aPDT. After 4 weeks, a regrowth of Porphyromonas gingivalis (p = 0.00) and Treponema denticola (p = 0.00), was observed for all treatments. Also, a strikingly reduction of counts on counts of Aggregatibacter actinomycetemcomitans was observed for the aPDT (p = 0.00). For the cytokine pattern, the results were similar for all treatments, and a reduction in the expression of cytokines and bacterial load was observed throughout the study. Our results suggest that SRP, aPDT in a single application, and SRP + aPDT affects different bacterial species and have similar effects on the expression of cytokines evaluated during the treatment of ligature-induced periodontitis.
Resumo:
Background: Tissue engineering principles could improve the incorporation of acellular dermal matrix (ADM). The aim of this study is to verify if ADM is a suitable three-dimensional matrix for gingival fibroblasts and cancerous cells ingrowth, and also if cultured medium conditioned in ADM affect cellular behavior. Methods: Canine gingival fibroblasts (CGF), human gingival fibroblasts (HGF), and murine melanoma cell line (B16F10) were seeded on ADM for up to 14 days. The following parameters were assessed: morphology and distribution of CGF, HGF, and B16F10; CGF and HGF viability; and the effect of ADM conditioned medium (CM) on CGF viability. Results: Epifluorescence revealed that CGF were unevenly distributed on the ADM surface, showing no increase in cell number over the periods of study; HGF formed a monolayer on the ADM surface in a higher number at 14 days (P<0.05); B16F10 exhibited an increase in cell number within 7 days (P<0.05), and were mainly arranged in cell aggregates on the ADM, forming a continuous layer at 14 days. A higher percentage of cells on the ADM surface (P<0.05) compared to inside was observed for all cell types. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MU) values indicated higher cell viability in samples cultured with HGF compared to CGF (P=0.024). A significantly lower cell viability for CGF grown in CM compared to cells grown in non-CM was observed at 48 and 72 hours (P<0.05). Conclusions: ADM is not suitable as a three-dimensional matrix for gingival fibroblasts ingrowth. Gingival fibroblasts and highly proliferative cells as B16F10 can only be superficially located on ADM, and CGF are negatively affected by culture medium conditioned in ADM, reducing its viability. J Periodontol 2011;82:293-301.
Resumo:
Biocomposites with two different fillers, garlic and wheat bran, were studied. They were based on cassava starch and contained glycerol as a plasticizer and potassium sorbate as an antimicrobial agent and were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and infrared spectroscopy (IR). The mechanical performance at room and lower temperatures was also studied. SEM micrographies of fractured surfaces of the wheat bran composite films showed some ruptured particles of fiber while fibrils of garlic on the order of nanometers were observed when garlic composite films were studied. Mechanical tests, at room temperature, showed that the addition of wheat bran led to an increment in the storage modulus (E`) and hardening and a decrease in Tan delta, while the garlic composite showed a diminishing in the E` and hardening and did not produce significant changes in Tan delta values when compared with systems without fillers (matrix). In the range between -90 degrees C and 20 degrees C. all the materials studied presented two peaks in the Tan delta curve. In the case of the wheat bran composite, both relaxation peaks shifted slightly to higher temperatures, broadened and diminished their intensity when compared with those of the matrix; however garlic composite showed a similar behavior to the matrix. DSC thermograms of aqueous systems showed a slight shift of gelatinization temperature (T(gelatinization)) to higher values when the fillers were present. Thermograms of films showed that both, garlic and wheat bran composites, had a lower melting point than the matrix. IR data indicated that interaction between starch and fillers determined an increase in the availability of hydroxyl groups to be involved in a dynamic exchange with water. (C) 2010 Elsevier B.V. All rights reserved.