987 resultados para mathematics computing
Resumo:
This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer-Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges and foundations of this research vision. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarises related work in this field of interest.
Resumo:
From location-aware computing to mining the social web, representations of context have promised to make better software applications. The opportunities and challenges of context-aware computing from representational, situated and interactional perspectives have been well documented, but arguments from the perspective of design are somewhat disparate. This paper draws on both theoretical perspectives and a design framing, using the problem of designing a social mobile agile ridesharing system, in order to reflect upon and call for broader design approaches for context-aware computing and human-computer Interaction research in general.
Resumo:
With rapid and continuing growth of learning support initiatives in mathematics and statistics found in many parts of the world, and with the likelihood that this trend will continue, there is a need to ensure that robust and coherent measures are in place to evaluate the effectiveness of these initiatives. The nature of learning support brings challenges for measurement and analysis of its effects. After briefly reviewing the purpose, rationale for, and extent of current provision, this article provides a framework for those working in learning support to think about how their efforts can be evaluated. It provides references and specific examples of how workers in this field are collecting, analysing and reporting their findings. The framework is used to structure evaluation in terms of usage of facilities, resources and services provided, and also in terms of improvements in performance of the students and staff who engage with them. Very recent developments have started to address the effects of learning support on the development of deeper approaches to learning, the affective domain and the development of communities of practice of both learners and teachers. This article intends to be a stimulus to those who work in mathematics and statistics support to gather even richer, more valuable, forms of data. It provides a 'toolkit' for those interested in evaluation of learning support and closes by referring to an on-line resource being developed to archive the growing body of evidence. © 2011 Taylor & Francis.
Resumo:
The ability to decode graphics is an increasingly important component of mathematics assessment and curricula. This study examined 50, 9- to 10-year-old students (23 male, 27 female), as they solved items from six distinct graphical languages (e.g., maps) that are commonly used to convey mathematical information. The results of the study revealed: 1) factors which contribute to success or hinder performance on tasks with various graphical representations; and 2) how the literacy and graphical demands of tasks influence the mathematical sense making of students. The outcomes of this study highlight the changing nature of assessment in school mathematics and identify the function and influence of graphics in the design of assessment tasks.
Less but more : weaving disparate disciplines together for learners to construct their own knowledge
Resumo:
This paper reports on a Professional Learning Program conducted in China with 140 general technology teachers. It aimed to integrate robotics technology across and within the disciplines of science, technology, engineering and mathematics. With the help of university facilitators teachers developed General Technology lessons that seamlessly integrated with rich learning content across disciplines. Teachers engaged in seminars and workshops, which provided the opportunities for them to actively couch sound principles of learning in their daily work. They gained first-hand experience in applying an aligned system of assessments, standards and quality learning experiences geared to the needs of each student. Teachers worked collaboratively in teams to create inquiry, design and collaborative learning activities that aligned with their curriculum and which dealt with real world problems, issues and challenges. They continually discussed and reflected deeply on the activities and shared the newly developed resources online with teachers across the entire country. It is evident from the preliminary analysis of data that teachers are beginning to apply rich pedagogical practices and are becoming ‘adaptive’ in their approach when using LEGO® robotic tools to design, redesign, create and re-create learning activities for their students.
Resumo:
This paper presents an extended granule mining based methodology, to effectively describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other granules, it provides a kind of novel knowledge in databases. We also provide an algorithm to implement the proposed methodology. The experiments conducted to characterize a real network traffic data collection show that the proposed concepts and algorithm are promising.
Resumo:
The purpose of this article is to describe a project with one Torres Strait Islander Community. It provides some insights into parents’ funds of knowledge that are mathematical in nature, such as sorting shells and giving fish. The idea of funds of knowledge is based on the premise that people are competent and have knowledge that has been historically and culturally accumulated into a body of knowledge and skills essential for their functioning and well-being. This knowledge is then practised throughout their lives and passed onto the next generation of children. Through adopting a community research approach, funds of knowledge that can be used to validate the community’s identities as knowledgeable people, can also be used as foundations for future learnings for teachers, parents and children in the early years of school. They can be the bridge that joins a community’s funds of knowledge with schools validating that knowledge.
Resumo:
Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
Resumo:
In this paper, a class of fractional advection–dispersion models (FADMs) is considered. These models include five fractional advection–dispersion models, i.e., the time FADM, the mobile/immobile time FADM with a time Caputo fractional derivative 0 < γ < 1, the space FADM with two sides Riemann–Liouville derivatives, the time–space FADM and the time fractional advection–diffusion-wave model with damping with index 1 < γ < 2. These equations can be used to simulate the regional-scale anomalous dispersion with heavy tails. We propose computationally effective implicit numerical methods for these FADMs. The stability and convergence of the implicit numerical methods are analysed and compared systematically. Finally, some results are given to demonstrate the effectiveness of theoretical analysis.
Resumo:
Multi-term time-fractional differential equations have been used for describing important physical phenomena. However, studies of the multi-term time-fractional partial differential equations with three kinds of nonhomogeneous boundary conditions are still limited. In this paper, a method of separating variables is used to solve the multi-term time-fractional diffusion-wave equation and the multi-term time-fractional diffusion equation in a finite domain. In the two equations, the time-fractional derivative is defined in the Caputo sense. We discuss and derive the analytical solutions of the two equations with three kinds of nonhomogeneous boundary conditions, namely, Dirichlet, Neumann and Robin conditions, respectively.
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.