975 resultados para määrä
Resumo:
BACKGROUND: The aim of our study was the investigation of a novel navigator-gated three-dimensional (3D) steady-state free-precession (SSFP) sequence for free-breathing renal magnetic resonance angiography (MRA) without contrast medium, and to examine the advantage of an additional inversion prepulse for improved contrast. METHODS: Eight healthy volunteers (mean age 29 years) and eight patients (mean age 53 years) were investigated on a 1.5 Tesla MR system (ACS-NT, Philips, Best, The Netherlands). Renal MRA was performed using three navigator-gated free-breathing cardiac-triggered 3D SSFP sequences [repetition time (TR) = 4.4 ms, echo time (TE) = 2.2 ms, flip angle 85 degrees, spatial resolution 1.25 x 1.25 x 4.0 mm(3), scanning time approximately 1 minute 30 seconds]. The same sequence was performed without magnetization preparation, with a non-slab selective and a slab-selective inversion prepulse. Signal-to-noise ratio (SNR), contrast-to-noise (CNR) vessel length, and subjective image quality were compared. RESULTS: Three-dimensional SSFP imaging combined with a slab-selective inversion prepulse enabled selective and high contrast visualization of the renal arteries, including the more distal branches. Standard SSFP imaging without magnetization preparation demonstrated overlay by veins and renal parenchyma. A non-slab-selective prepulse abolished vessel visualization. CNR in SSFP with slab-selective inversion was 43.6 versus 10.6 (SSFP without magnetization preparation) and 0.4 (SSFP with non-slab-selective inversion), P < 0.008. CONCLUSION: Navigator-gated free-breathing cardiac-triggered 3D SSFP imaging combined with a slab-selective inversion prepulse is a novel, fast renal MRA technique without the need for contrast media.
Resumo:
The authors compared radial steady-state free precession (SSFP) coronary magnetic resonance (MR) angiography, cartesian k-space sampling SSFP coronary MR angiography, and gradient-echo coronary MR angiography in 16 healthy adults and four pilot study patients. Standard gradient-echo MR imaging with a T2 preparatory pulse and cartesian k-space sampling was the reference technique. Image quality was compared by using subjective motion artifact level and objective contrast-to-noise ratio and vessel sharpness. Radial SSFP, compared with cartesian SSFP and gradient-echo MR angiography, resulted in reduced motion artifacts and superior vessel sharpness. Cartesian SSFP resulted in increased motion artifacts (P <.05). Contrast-to-noise ratio with radial SSFP was lower than that with cartesian SSFP and similar to that with the reference technique. Radial SSFP coronary MR angiography appears preferable because of improved definition of vessel borders.
Resumo:
Heart failure has been divided into several different forms depending on etiology, clinical course and pathophysiology of left ventricular (LV) dysfunction. Systolic and diastolic dysfunction are characterized by a reduced cardiac output with normal (= diastolic dysfunction) or depressed (= systolic dysfunction) LV pump function. New diagnostic techniques such as magnetic resonance imaging (MRI) allow to determine noninvasively LV 3D motion by labelling specific myocardial regions (= myocardial "tagging") with a rectangular or radial grid. From the deformation of this grid rotational and translational motion of the heart can be derived. A "wringing" motion of the left ventricle has been described during systole which includes a clockwise rotation at the base and a counterclockwise rotation at the apex. During diastole, an "untwisting" motion has been demonstrated. In the normal heart, diastolic "untwisting" occurs primarily during isovolumic relaxation, analogous to the systolic "wringing" which takes place mainly during isovolumic contraction. A prolongation of the "untwisting" motion was found in the hypertrophied (aortic stenosis) and hibernating myocardium. Thus, heart failure is associated with profound alterations in the mechanical function of the heart which are manifested by changes in systolic "wringing" and diastolic "untwisting" motion.
Resumo:
Purpose: To perform in vivo imaging of the cerebellum with an in-plane resolution of 120 mm to observe its cortical granular and molecular layers by taking advantage of the high signal-to-noise ratio and the increased magnetic susceptibility-related contrast available at high magnetic field strength such as 7 T. Materials and Methods: The study was approved by the institutional review board, and all patients provided written consent. Three healthy persons (two men, one woman; mean age, 30 years; age range, 28-31 years) underwent MR imaging with a 7-T system. Gradient-echo images (repetition time msec/echo time msec, 1000/25) of the human cerebellum were acquired with a nominal in-plane resolution of approximately 120 mum and a section thickness of 1 mm. Results: Structures with dimensions as small as 240 mum, such as the granular and molecular layers in the cerebellar cortex, were detected in vivo. The detection of these structures was confirmed by comparing the contrast obtained on T2*-weighted and phase images with that obtained on images of rat cerebellum acquired at 14 T with 30 mum in-plane resolution. Conclusion: In vivo cerebellar imaging at near-microscopic resolution is feasible at 7 T. Such detailed observation of an anatomic area that can be affected by a number of neurologic and psychiatric diseases, such as stroke, tumors, autism, and schizophrenia, could potentially provide newer markers for diagnosis and follow-up in patients with such pathologic conditions. (c) RSNA, 2010.
Resumo:
The results of several large multicenter CMR studies were reported in 2012, thus, constantly corroborating the evidence on CMR performance. In this review, we present results of the MR-IMPACT programme and the CE-MARC study, which demonstrated the superiority of perfusion-CMR over gated SPECT for the workup of suspected CAD, the currently available data from the European CMR registry, comprising almost 30,000 patients from 57 participating centers in 15 European countries, and finally, the results of the Advisa-MRI study, which documented the safety of a MRI-compatible pacemaker system. These large trials and others set the basis for the recommendations in the new European guidelines on heart failure to use CMR as a first line method if echocardiographic quality is inadequate or the etiology of heart failure is unclear.
Resumo:
Objectifs: Déterminer la fréquence et les facteurs prédictifs de l'effet T2 shine-through dans l'hémangiome hépatique. Matériels et méthodes: Entre janvier 2010 et novembre 2011, l'imagerie par résonance magnétique du foie de 149 patients avec 388 hémangiomes hépatiques a été revue rétrospectivement. Les caractéristiques lésionnelles: la taille, la localisation, le signal et l'aspect en T1, T2 et en diffusion, l'effet T2 shine-through, le coefficient apparent de diffusion des hémangiomes hépatiques et du foie et type de rehaussement ont été évalués. Résultats: L'effet T2 shine-through était observé dans 204/388 (52.6%) des hémangiomes hépatiques et 100 (67.1%) patients. L'ADC moyen des hémangiomas avec T2 shine-through effect était significativement plus bas que les hémangiomas sans T2 shine-through effect (2.0 +/- 0.48 vs 2.38 +/- 0.45 10"3 mm2/s, P < .0001). L'analyse multivariée retrouvait comme facteurs indépendants de la présence d'un effet T2 shine-through un hypersignal sur les images fat- suppressed T2-weighted fast spin-echo, les hémangiomes avec un rehaussement classique et retardé, et l'ADC du foie. Conclusion: Le T2 shine-through effect est fréquemment observé dans les hémangiomes hépatiques et dépend des caractéristiques lésionnelles. Sa présence ne remet pas en question le diagnostic lorsque les signes IRM typiques sont présents.
Resumo:
[Traité. 0315-1738]
Resumo:
[Traité. 0315-1738]
Resumo:
[Traité. 0315-1738]