897 resultados para low carbon steel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attempt to systematically investigate the effects of microstructural parameters in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels has been made for a high strength low alloy steel to observe in general, widely different trends in the dependence of both the total threshold stress intensity range, DELTA-K(th) and the intrinsic or effective threshold stress intensity range, DELTA-K(eff-th) on the prior austenitic grain size (PAGS). While a low strain hardening microstructure obtained by tempering at high temperatures exhibited strong dependence of DELTA-K(th) on the PAGS by virtue of strong interactions of crack tip slip with the grain boundary, a high strength, high strain hardening microstructure as a result of tempering at low temperature exhibited a weak dependence. The lack of a systematic variation of the near-threshold parameters with respect to grain size in temper embrittled structures appears to be related to the wide variations in the amount of intergranular fracture near threshold. Crack closure, to some extent provides a basis on which the increases in DELTA-K(th) at larger grain sizes can be rationalised. This study, in addition, provides a wide perspective on the relative roles of slip behaviour embrittlement and environment that result in the different trends observed in the grain size dependence of near-threshold fatigue parameters, based on which the inconsistency in the results reported in the literature can be clearly understood. Assessment of fracture modes through extensive fractography revealed that prior austenitic grain boundaries are effective barriers to cyclic crack growth compared to martensitic packet boundaries, especially at low stress intensities. Fracture morphologies comprising of low energy flat transgranular fracture can occur close to threshold depending on the combinations of strain hardening behaviour, yield strength and embrittlement effects. A detailed consideration is given to the discussion of cyclic stress strain behaviour, embrittlement and environmental effects and the implications of these phenomena on the crack growth behaviour near threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

European accounts from the 17th century onwards have referred to the repute and manufacture of “wootz’, a traditional crucible steel made especially in parts of southern India in the former provinces of Golconda, Mysore and Salem. Pliny's Natural History mentions the import of iron and steel from the Seres which have been thought to refer to the ancient southern Indian kingdom of the Cheras. As yet the scale of excavations and surface surveys is too limited to link the literary accounts to archaeometallurgical evidence, although pioneering exploratory investigations have been made by scholars, especially on the pre-industrial production sites of Konasamudram and Gatihosahalli discussed in 18th-19th century European accounts. In 1991–2 during preliminary surveys of ancient base metal mining sites, Srinivasan came across unreported dumps with crucible fragments at Mel-Siruvalur in Tamil Nadu, and Tintini and Machnur in Karnataka and she collected surface specimens from these sites as well as from the known site of Gatihosahalli. She was also given crucible fragments by the Tamil University, Tanjavur, from an excavated megalithic site at Kodumanal, dated to ca 2nd c. Bc, mentioned in Tamil Sangam literature (ca 3rd c. BC-3rd c. AD), and very near Karur, the ancient capital of the Sangam Cheras. Analyses of crucible fragments from the surface collection at Mel-Siruvalur showed several iron prills with a uniform pearlitic structure of high-carbon hypereutectoid steel (∼1–1.5% C) suggesting that the end product was uniformly a high-carbon steel of a structure consistent with those of high-carbon steels used successfully to experimentally replicate the watered steel patterns on ‘Damascus’ swords. Investigations indicate that the process was of carburisation of molten low carbon iron (m.p. 1400° C) in crucibles packed with carbonaceous matter. The fabric of crucibles from all the above mentioned sites appears similar. Preliminary investigations on these crucibles are thus reported to establish their relationship to crucible production of carbon steel and to thereby extend the known horizons of this technology further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of all laser-based processes, laser machining has received little attention compared with others such as cutting, welding, heat treatment and cleaning. The reasons for this are unclear, although much can be gained from the development of an effcient laser machining process capable of processing diffcult materials such as high-performance steels and aerospace alloys. Existing laser machining processes selectively remove material by melt shearing and evaporation. Removing material by melting and evaporation leads to very low wall plug effciencies, and the process has difficulty competing with conventional mechanical removal methods. Adopting a laser machining solution for some materials offers the best prospects of effcient manufacturing operations. This paper presents a new laser machining process that relies on melt shear removal provided by a vertical high-speed gas vortex. Experimental and theoretical studies of a simple machining geometry have identifed a stable vortex regime that can be used to remove laser-generated melt effectively. The resultant combination of laser and vortex is employed in machining trials on 43A carbon steel. Results have shown that laser slot machining can be performed in a stable regime at speeds up to 150mm/min with slot depths of 4mm at an incident CO2 laser power level of 600 W. Slot forming mechanisms and process variables are discussed for the case of steel. Methods of bulk machining through multislot machining strategies are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many mining operations (e.g. excavation, drilling, tunnelling, rock crushing) metallic components are forced against abrasive rocks in a complex motion. This study examines the relative importance of combined rolling and sliding motion in the two-body abrasive wear of a low carbon tempered martensitic steel against rock counterfaces. A novel wear test rig has been used to vary the amount of rolling and sliding motion between a rotating steel cylinder and a counter-rotating sandstone (highly abrasive) or limestone (much less abrasive) disc. Weight-loss measurements reveal that the wear rate of the steel increases as the amount of motion against the rock counterface is reduced from pure sliding to approximately 50% sliding (and approximately 50% rolling). Scanning electron microscopy shows that when the amount of motion is reduced from pure sliding to approximately 50% sliding the topographical and sub-surface physical properties of the worn steel and rock surfaces are modified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of simulation experiments on carbon steel (A(3) steel) and low alloy steel (16 Mn steel) in marine atmosphere (MA), seawater (SW) and seabed sediment (SBS) including rough sea sand, fine sea sand and seabed mud were carried out indoors for a year or so by means of individually hanging plates (IHP) and electrically connected hanging plates (ECHP). The corrosion of steels in SBS was mainly due to the macrogalvanic cell effect. The steel plates at the bottom of SBS, as the anode of a macrogalvanic cell, showed the heaviest corrosion with a corrosion rate of up to 0.12 mm/a, approximately equal to that of steel plates in marine atmosphere. The test results showed that the corrosion rates of A(3) and 16 Mn steel in marine environment were in the order: MA > SW > SBS by the IHP method; and MA > SBS > SW by the ECHP method. The corrosion rates of steels in the water/sediment interface were directly proportional to the grain size of the SBS by the ECHP method, but those of steels in the water/sediment interface did not vary with the grain size of SBS by the IHP method. The corrosion rate of low-alloy steel was a little higher than that of carbon steel. The results of this study have important applications for design of offshore steel structures such as oil platform, pier, and port.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitride-strengthened, reduced activation, martensitic steel is anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Two nitride-strengthened, reduced activation martensitic steels with different carbon contents were prepared to investigate the microstructure and mechanical property changes with decreasing carbon content. It has been found that both steels had the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and displayed extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 pct in wt pct), the steel with high carbon content (0.012 pct in wt pct) had not only the higher strength but also the higher impact toughness and grain coarsening temperature, which was related to the carbon content. On the one hand, carbon reduction led to Ta-rich inclusions; on the other hand, the grain grew larger when normalized at high temperature because of the absence of Ta carbonitrides, which would decrease impact toughness. The complicated Al2O3 inclusions in the two steels have been revealed to be responsible for the initiated cleavage fracture by acting as the critical cracks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The United Kingdom is committed to a raft of requirements to create a low-carbon economy. Buildings consume approximately 40% of UK energy demand. Any improvement on the energy performance of buildings therefore can significantly contribute to the delivery of a low-carbon economy. The challenge for the construction sector and its clients is how to meet the policy requirements to deliver low and zero carbon (LZC) buildings, which spans broader than the individual building level, to requirements at the local and regional levels, and wider sustainability pressures. Further, the construction sector is reporting skills shortages coupled with the need for ‘new skills’ for the delivery of LZC buildings. The aim of this paper is to identify, and better understand, the skills required by the construction sector and its clients for the delivery of LZC buildings within a region. The theoretical framing for this research is regional innovation system (RIS) using a socio-technical network analysis (STNA) methodology. A case study of a local authority region is presented. Data is drawn from a review of relevant local authority documentation, observations and semi-structured interviews from one (project 1) of five school retrofit projects within the region. The initial findings highlight the complexity surrounding the form and operation of the LZC network for project 1. The skills required by the construction sector and its clients are connected to different actor roles surrounding the delivery of the project. The key actors involved and their required skills are: project management and energy management skills required by local authority; project management skills (in particular project planning), communication and research skills required by school end-users; and a ‘technical skill’ relating to knowledge of a particular energy efficient measure (EEM) and use of equipment to implement the EEM is required by the EEM contractors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two experiments were conducted to clarify the roles of grain size, solute carbon and strain in determining the recrystallization textures of cold-rolled and annealed steels. In the first experiment, samples of coarse-grained low-carbon (LC) and interstitial-free (IF) steels were cold-rolled to a 75% reduction in thickness. One sample from each steel was polished and cold-rolled an additional 5%, while the remaining samples were annealed for various times at 650°C. In the second experiment, three samples from a commercial LC steel sheet were rolled 70% at 300°C. Two of the samples were given a further rolling reduction of 5% of the original thickness, with one of the samples being given this additional reduction at 300°C and the other at room temperature. Goss recrystallization textures are strengthened by coarse initial grain sizes, the presence of solute carbon and rolling at a temperature where dynamic strain ageing occurs, but are weakened by additional rolling beyond a reduction of 70%, especially when this extra rolling is conducted at a temperature where dynamic strain ageing does not occur. Characterization of key features of the deformed and recrystallized steels using optical microscopy, scanning electron microscopy (SEM) and electron back-scatter diffraction (EBSD) supports a rationale for these effects based on the repeated activation and deactivation of shear bands and the influence of solute carbon and dynamic strain ageing on the operating life of the bands and the accumulation of strain within them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common grades of steel used in roll forming are: hot rolled carbon steel, high strength low alloy and recovery annealed cold rolled sheet. These steels are prone to ageing and are often skin passed and/or roller leveled to eliminate ageing as it can lead to problems in forming. In roll forming, shape defects such as bow, twist and camber are considered to be related to very small plastic strains in the longitudinal direction and hence knowledge of the material properties in the elastic plastic transition range is necessary if the process is to be modelled accurately. Previous studies with aluminium have indicated that skin pass rolling can lead to residual stresses in the strip. In this work, the study was extended to aged carbon steel and to the effect of roller leveling on both aged material and strip that had been given a light cold rolling to simulate a skin pass treatment. The results suggest that roller leveling reduced the magnitude of residual stresses resulting from skin pass rolling.

The significant differences observed between tensile and bending test results, at and near, the elastic plastic transition reinforces the need to consider bending properties when assessing the effect of prior processing on strip for roll forming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, copper-bearing low carbon steels were produced by direct strip casting (DSC) method on a pilot scale. The effects of copper on mechanical, microstructural, and recrystallization behavior were investigated. As-cast microstructure mainly consists of polygonal ferrite and Widmanstatten ferrite. The increase in Cu increases the amount of Widmanstatten ferrite and induces the formation of bainite in the as-cast condition. It was found that copper increases strength and hardness by solid solution strengthening, grain refinement, and precipitation hardening and the increment is significant above 1% Cu in as-cast condition. Six different compositions were selected for recrystallization study. All the samples were cold rolled to 70% reduction and annealed at three different temperatures, 600, 650, and 700°C for various times. Recrystallization responses were strongly dependent on initial microstructure and Cu content and the effect is dramatic between 1 and 2% Cu. Recrystallization time and temperature were found to be increased with increase in copper content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter investigates two important processing methods, such as welding and machine of duplex stainless steel. The welding process welding generally degrades the properties of these materials by redistributing the phases during melting and solidification. On the other hand, the redistribution during machining mainly take place combined effect of stress, strain rate and temperature. Mechanism of machining process and several welding methods has been analysed in details. It was found that outcomes of welding processes depend on the welding methods. Most of the cases an appropriate annealing process can be used to restore the expected properties of the weld joints though the parameters of annealing process are different in different welding methods. Nonmetallic inclusions and the low carbon content of duplex stainless steel reduce the machinability of duplex stainless steel. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Abrasion and adhesion were the most common wear modes developed on the flank and rake faces. Adhesion wear being the most prevalent on the flank face, appeared to be initiated by built-up edge formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study on the influence of milling condition on workpiece surface integrity focusing on hardness and roughness. The experimental work was carried out on a CNC machining center considering roughing and finishing operations. A 25 mm diameter endmill with two cemented carbide inserts coated with TiN layer were used for end milling operation. Low carbon alloyed steel Cr-Mo forged at 1200 degrees C was used as workpiece on the tests. Two kinds of workpiece conditions were considered, i.e. cur cooled after hot forging and normalized at 950 degrees C for 2 h. The results showed that finishing operation was able to significantly decrease the roughness by at least 46% without changing the hardness. on the other hand, roughing operation caused an increase in hardness statistically significant by about 6%. The machined surface presented deformed regions within feed marks, which directly affected the roughness. Surface finish behavior seems to correlate to the chip ratio given the decrease of 25% for roughing condition, which damaged the chip formation. The material removal rate for finishing operation 41% greater than roughing condition demonstrated to be favorable to the heat dissipation and minimized the effect on material hardness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, autogenous laser welding was used to join thin plates of low carbon ferritic and austenitic stainless steel. Due to the differences in the thermo-physical properties of base metals, this kind of weld exhibits a complex microstructure, which frequently leads to an overall loss of joint quality. Four welded samples were prepared by using different sets of processing parameters, with the aim of minimizing the induced residual stress field. The dissimilar austenitic-ferritic joints obtained under all welding conditions were uniform and free of defects. Variations in beam position did not influence the weld geometiy, which is a typical keyhole welding. Microstructural characterization and residual strain scanning (by neutron diffraction) were used to assess the features of the joints. By varying laser beam power density and by displacing the laser beam towards the carbon steel side, an optimum combination of processing parameters was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is [GRAPHICS] However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 degrees of (221)(A) or of (259)(A). The latter only corresponds with a habit plane that is within 5 degrees of (259)(A). The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/- 0.5 degrees in lath martensite in an Fe-20 wt.% Ni-6 wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19 wt.% Ni-3.5 wt.% Mn-0.15 wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation. (c) 2006 Elsevier B.V. All rights reserved.