856 resultados para lodgment of caveat without reasonable cause
Resumo:
Lactose is probably the most used tablet excipient in the field of pharmacy. Although lactose is thoroughly characterized and available in many different forms there is a need to find a replacer for lactose as a filler/binder in tablet formulations because it has some downsides. Melibiose is a relatively unknown disaccharide that has not been thoroughly characterized and not previously used as an excipient in tablets. Structurally melibiose is close to lactose as it is also formed from the same two monosaccharides, glucose and galactose. Aim of this research is to characterize and to study physicochemical properties of melibiose. Also the potential of melibiose to be used as pharmaceutical tablet excipient, even as a substitute for lactose is evaluated. Current knowledge about fundamentals of tableting and methods for determinating of deformation behavior and tabletability are reviewed. In this research Raman spectroscopy, X-ray powder diffraction (XRPD), near-infrared spectroscopy (NIR) and Fourier-transform infrared spectroscopy (FT-IR) were used to study differences between two melibiose batches purchased from two suppliers. In NIR and FT-IR measurements no difference between materials could be observed. XPRD and Raman however found differences between the two melibiose batches. Also the effects of moisture content and heating to material properties were studied and moisture content of materials seems to cause some differences. Thermal analytical methods, differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to study thermal behaviour of melibiose and difference between materials was found. Other melibiose batch contains residual water which evaporates at higher temperatures causing the differences in thermal behaviour. Scanning electron microscopy images were used to evaluate particle size, particle shape and morphology. Bulk, tapped and true densities and flow properties of melibiose was measured. Particle size of the melibiose batches are quite different resulting causing differences in the flowability. Instrumented tableting machine and compression simulator were used to evaluate tableting properties of melbiose compared to α-lactose monohydrate. Heckel analysis and strain-rate sensitivity index were used to determine deformation mechanism of melibiose monohydrate in relation to α–lactose monohydrate during compaction. Melibiose seems to have similar deformation behaviour than α-lactose monohydrate. Melibiose is most likely fragmenting material. Melibiose has better compactibility than α – lactose monohydrate as it produces tablets with higher tensile strength with similar compression pressures. More compression studies are however needed to confirm these results because limitations of this study.
Resumo:
ABSTRACT Idiopathic developmental disorders (DDs) affect ~1% of the population worldwide. This being a considerable amount, efforts are being made to elucidate the disease mechanisms. One or several genetic factors cause 30-40% of DDs, and only 10% are caused by environmental factors. The remaining 50% of DD patients go undiagnosed, mostly due to a lack of diagnostic techniques. The cause in most undiagnosed cases is though to be a genetic factor or a combination of genetic and environmental factors. Despite the surge of new technologies entering the market, their implementation into diagnostic laboratories is hampered by costs, lack of information about the expected diagnostic yield, and the wide range of selection. This study evaluates new microarray methods in diagnosing idiopathic DDs, providing information about their added diagnostic value. Study I analysed 150 patients by array comparative genomic hybridization (array CGH, 44K and 244K), with a subsequent 18% diagnostic yield. These results are supported by other studies, indicating an enourmous added diagnostic value of array CGH, compared with conventional cytogenetic analysis. Nevertheless, 80% of the patients remained undiagnosed in Study I. In an effort to diagnose more patients, in Study IV the resolution was increased from 8.9 Kb of the 244K CGH array to 0.7 Kb, by using a single-nucleotide polymorphism (SNP) array. However, no additional pathogenic changes were detected in the 35 patients assessed, and thus, for diagnostic purposes, an array platform with ca 9 Kb resolution appears adequate. The recent vast increase in reports of detected aberrations and associated phenotypes has enabled characterization of several new syndromes first based on a common aberration and thereafter by delineation of common clinical characteristics. In Study II, a familial deletion at 9q22.2q22.32 with variable penetrance was described. Despite several reports of aberrations in the adjacent area at 9q associated with Gorlin syndrome, the patients in this family had a unique phenotype and did not present with the syndrome. In Study III, a familial duplication of chromosome 6p22.2 was described. The duplication caused increased expression of an important enzyme of the γ-aminobutyric acid (GABA) degradation pathway, causing oxidative stress of the brain, and thus, very likely, the mild mental retardation of these patients. These two case studies attempted to pinpoint candidate genes and to resolve the pathogenic mechanism causing the clinical characteristics of the patients. Presenting rare genetic and clinical findings to the international science and medical community enables interpretation of similar findings in other patients. The added value of molecular karyotyping in patients with idiopathic DD is evident. As a first line of testing, arrays with a median resolution of at least 9 Kb should be considered and further characterization of detected aberrations undertaken when possible. Diagnostic whole-exome sequencing may be the best option for patients who remain undiagnosed after high-resolution array analysis.
Resumo:
The temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) of thiophene over a series of Co-Mo/gamma-Al2O3, hydrodesulfurization (HDS) catalysts with varying Co to Mo ratios have been studied with the objective of understanding the promotional role of Co in the HDS reaction. As part of the study, the desorptions (TPD) and hydrogenations (TPSR) of butane, butene, and butadiene over these catalysts have also been investigated. The TPD of the hydrocarbons over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site, with higher heats of desorption, without significantly affecting desorption from the original site. The TPSR measurements showed that the two sites had separate and independent activity for the hydrogenation of the C-4 hydrocarbons. The TPD of thiophene over catalysts with varying Co to Mo ratios showed a single desorption profile with identical heats of desorption, implying that Co does not affect or influence the adsorption sites for thiophene. The TPSR of the HDS of thiophene, however, showed that, although the products of the HDS reaction-butane, butene, and H2S-are the same irrespective of the Co content, the temperature profiles and the activation barriers for the formation of these species show considerable change with the Co/Co+Mo ratio. The results are discussed in light of the existing models for the promotional role of Co in the HDS reaction.
Resumo:
The capturability of a realistic generalized true proportional navigation (RGTPN) guidance law, against a nonmaneuvering target, is analyzed. The RGTPN law is obtained by relaxing the somewhat unrealistic assumption of constant closing velocity, made in all earlier studies on generalized true proportional navigation (GTPN), and incorporating the actual time-varying value in the guidance law. Closed-form solutions for the complete capture region of RGTPN is obtained in terms of both zero and acceptable non-zero miss distances. It is shown that the capture region of RGTPN in the initial relative velocity space is significantly smaller than that of GTPN, for reasonable values of navigation constant (N) and angular direction (eta) of the missile commanded latax. However, for certain values of N and eta, capturability of RGTPN is found to be better. It is also shown that if in one of the versions of GTPN, which uses constant values of both the closing velocity and the line-of-sight (LOS) angular velocity in the guidance law, the corresponding realistic time-varying quantities are used, the capture region actually expands to cover the whole of the initial relative velocity space. A number of examples are given to compare the capture performance of RGTPN with other versions of the GTPN guidance laws.
Resumo:
Poly(o-toluidine) (POT) and poly(m-toluidine) (PMT) blends with polyvinylchloride (PVC) of five different compositions have been prepared by solution blending. The POT-PVC and PMT-PVC blends were prepared using THF as a solvent in which POT-HNO3, PMT-HNO3 bases and PVC are soluble. The blends have been characterized by spectral, thermal and electrical measurements. The results indicate the formation of blends at all the compositions presently studied. The thermal stability of the POT-PVC and PMT-PVC blends is higher than that of POT-HNO3 and PMT-HNO3 salts, respectively. Using the present method, POT/PMT can conveniently be blended with 30% wt/wt of PVC without significant loss in its conductivity. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The presence of vacuum inside the cavity of a capacitive micromachined ultrasonic transducer (CMUT) causes the membrane of the device (which is the main vibrating structural component) to deflect towards the substrate, thereby causing a reduction in the effective gap height. This reduction causes a drastic decrease in the pull-in voltage of the device limiting the DC bias at which the device can be operated for maximum efficiency. In addition, this initial deflection of the membrane due to atmospheric pressure, causes significant stress stiffening of the the membrane, changing the natural frequency of the device significantly from the design value. To circumvent the deleterious effects of vacuum in the sealed cavity, we investigate the possibility of using sealed CMUT cavities with air inside at ambient pressure. In order to estimate the transducer loss due to the presence of air in the sealed cavity, we evaluate the resulting damping and determine the forces acting on the vibrating membrane resulting from the compression of the trapped air film. We take into account the flexure of the top vibrating membrane instead of assuming the motion to be parallel-plate like. Towards this end, we solve the linearized Reynolds equation using the appropriate boundary conditions and show that, for a sealed CMUT cavity, the presence of air does not cause any squeeze film damping.
Resumo:
A product is reflects the constraints, beliefs and aspirations of a society. Product development both influences and is influenced by the growth of a society and its economy. India is a fast growing economy. We use a brief historical, socioeconomic account of India as a backdrop to detect the drivers and roadblocks to its economic and social growth. In this context, current and future trends of PD practice, education and research are sketched. Products are taken as artefacts of the act of designing, without limiting to only those created by industry in a market-economic context.
Resumo:
The instants at which significant excitation of vocal tract take place during voicing are referred to as epochs. Epochs and strengths of excitation pulses at epochs are useful in characterizing voice source. Epoch filtering technique proposed by the authors determine epochs from speech waveform. In this paper we propose zero-phase inverse filtering to obtain strengths of excitation pulses at epochs. Zero-phase inverse filter compensates the gross spectral envelope of short-time spectrum of speech without affecting phase characteristics. Linear prediction analysis is used to realize the zero-phase inverse filter. Source characteristics that can be derived from speech using this technique are illustrated with examples.
Resumo:
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M-w) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01 degrees and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.
Resumo:
Many common activities, like reading, scanning scenes, or searching for an inconspicuous item in a cluttered environment, entail serial movements of the eyes that shift the gaze from one object to another. Previous studies have shown that the primate brain is capable of programming sequential saccadic eye movements in parallel. Given that the onset of saccades directed to a target are unpredictable in individual trials, what prevents a saccade during parallel programming from being executed in the direction of the second target before execution of another saccade in the direction of the first target remains unclear. Using a computational model, here we demonstrate that sequential saccades inhibit each other and share the brain's limited processing resources (capacity) so that the planning of a saccade in the direction of the first target always finishes first. In this framework, the latency of a saccade increases linearly with the fraction of capacity allocated to the other saccade in the sequence, and exponentially with the duration of capacity sharing. Our study establishes a link between the dual-task paradigm and the ramp-to-threshold model of response time to identify a physiologically viable mechanism that preserves the serial order of saccades without compromising the speed of performance.
Resumo:
Recently nano scale zero valent iron particles (nZVI) have been considered as smart adsorbent for environmental and groundwater remediation. Although several synthetic methods are available for the preparation of nZVI, air stable nZVI are not available for remediation works. Further, challenges demand synthesis of nZVI without stabilizers and capping agents. A modified methodology for the synthesis of air stable nZVI has been developed without any capping agents and characterized by powder X-Ray Diffraction (XRD), Scanning Electron Microscopy Energy-dispersive X-Ray (SEM-EDS), Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS). The results of the present study suggest that the synthetic nZVI are air-stable over a period of one year and consists of particles of 30-40 nm in diameter. Although a layer of less than 3 am thick oxide/hydroxide is observed by TEM and XPS, it appears to be due to oxidation of outer surface during analysis. Adsorption study has shown that the synthetic nZVI are more effective adsorbent than the commercial nZVI and can remove simultaneously arsenite As-III] and arsenate As-V] from water without prior reduction of As-V to As-III. The removal process is adsorptive rather than precipitative and the removal of As-III is greater than that of As-V.
Resumo:
For the first time, Tin oxide (SnO2) multiple branched nanowires (NWs) have been synthesized by thermal evaporation of tin (Sn) in presence of oxygen without use of metal catalysts at low substrate temperature of 500 degrees C. Synthesized product consists of multiple branched nanowires and were single crystalline in nature. Each of the nanowire capped with catalyst particle at their ends. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirms that Sn act as catalyst for SnO2 nanowires growth. A self catalytic vapor-liquid-solid (VLS) growth mechanism was proposed to describe the SnO2 nanowires growth. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.
Resumo:
Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.
Resumo:
Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.