749 resultados para lithium batteries
Resumo:
Lithium salts have a well-established role in the treatment of major affective disorders. More recently, experimental and clinical studies have provided evidence that lithium may also exert neuroprotective effects. In animal and cell culture models, lithium has been shown to increase neuronal viability through a combination of mechanisms that includes the inhibition of apoptosis, regulation of autophagy, increased mitochondrial function, and synthesis of neurotrophic factors. In humans, lithium treatment has been associated with humoral and structural evidence of neuroprotection, such as increased expression of anti-apoptotic genes, inhibition of cellular oxidative stress, synthesis of brain-derived neurotrophic factor (BDNF), cortical thickening, increased grey matter density, and hippocampal enlargement. Recent studies addressing the inhibition of glycogen synthase kinase-3 beta (GSK3B) by lithium have further suggested the modification of biological cascades that pertain to the pathophysiology of Alzheimer's disease (AD). A recent placebo-controlled clinical trial in patients with amnestic mild cognitive impairment (MCI) showed that long-term lithium treatment may actually slow the progression of cognitive and functional deficits, and also attenuate Tau hyperphosphorylation in the MCI-AD continuum. Therefore, lithium treatment may yield disease-modifying effects in AD, both by the specific modification of its pathophysiology via inhibition of overactive GSK3B, and by the unspecific provision of neurotrophic and neuroprotective support. Although the clinical evidence available so far is promising, further experimentation and replication of the evidence in large scale clinical trials is still required to assess the benefit of lithium in the treatment or prevention of cognitive decline in the elderly.
Resumo:
Sanches TR, Volpini RA, Massola Shimizu MH, de Bragan a AC, Oshiro-Monreal F, Seguro AC, Andrade L. Sildenafil reduces polyuria in rats with lithium-induced NDI. Am J Physiol Renal Physiol 302: F216-F225, 2012. First published October 12, 2011; doi:10.1152/ajprenal.00439.2010.-Lithium (Li)-treated patients often develop urinary concentrating defect and polyuria, a condition known as nephrogenic diabetes insipidus (NDI). In a rat model of Li-induced NDI, we studied the effect that sildenafil (Sil), a phosphodiesterase 5 (PDE5) inhibitor, has on renal expression of aquaporin-2 (AQP2), urea transporter UT-A1, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), epithelial Na channel (ENaC; alpha-, beta-, and gamma-subunits), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase. We also evaluated cGMP levels in medullary collecting duct cells in suspension. For 4 wk, Wistar rats received Li (40 mmol/kg food) or no treatment (control), some receiving, in weeks 2-4, Sil (200 mg/kg food) or Li and Sil (Li+Sil). In Li+Sil rats, urine output and free water clearance were markedly lower, whereas urinary osmolality was higher, than in Li rats. The cGMP levels in the suspensions of medullary collecting duct cells were markedly higher in the Li+Sil and Sil groups than in the control and Li groups. Semiquantitative immunoblotting revealed the following: in Li+Sil rats, AQP2 expression was partially normalized, whereas that of UT-A1, gamma-ENaC, and eNOS was completely normalized; and expression of NKCC2 and NHE3 was significantly higher in Li rats than in controls. Inulin clearance was normal in all groups. Mean arterial pressure and plasma arginine vasopressin did not differ among the groups. Sil completely reversed the Li-induced increase in renal vascular resistance. We conclude that, in experimental Li-induced NDI, Sil reduces polyuria, increases urinary osmolality, and decreases free water clearance via upregulation of renal AQP2 and UT-A1.
Resumo:
Increased neuronal oxidative stress (OxS) induces deleterious effects on signal transduction, structural plasticity and cellular resilience, mainly by inducing lipid peroxidation in membranes, proteins and genes. Major markers of OxS levels include the thiobarbituric acid reactive substances (TBARS) and the enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase. Lithium has been shown to prevent and/or reverse DNA damage, free-radical formation and lipid peroxidation in diverse models. This study evaluates OxS parameters in healthy volunteers prior to and following lithium treatment. Healthy volunteers were treated with lithium in therapeutic doses for 2-4 weeks. Treatment with lithium in healthy volunteers selectively altered SOD levels in all subjects. Furthermore, a significant decrease in the SOD/CAT ratio was observed following lithium treatment, wich was associated with decreased OxS by lowering hydrogen peroxide levels. This reduction in the SOD/CAT ratio may lead to lower OxS, indicated primarily by a decrease in the concentration of cell hydrogen peroxide. Overall, the present findings indicate a potential role for the antioxidant effects of lithium in healthy subjects, supporting its neuroprotective profile in bipolar disorder (BD) and, possibly, in neurodegenerative processes.
Resumo:
Context. Lithium abundances in open clusters are a very effective probe of mixing processes, and their study can help us to understand the large depletion of lithium that occurs in the Sun. Owing to its age and metallicity, the open cluster M 67 is especially interesting on this respect. Many studies of lithium abundances in M 67 have been performed, but a homogeneous global analysis of lithium in stars from subsolar masses and extending to the most massive members, has yet to be accomplished for a large sample based on high-quality spectra. Aims. We test our non-standard models, which were calibrated using the Sun with observational data. Methods. We collect literature data to analyze, for the first time in a homogeneous way, the non-local thermal equilibrium lithium abundances of all observed single stars in M 67 more massive than similar to 0.9 M-circle dot. Our grid of evolutionary models is computed assuming a non-standard mixing at metallicity [Fe/H] = 0.01, using the Toulouse-Geneva evolution code. Our analysis starts from the entrance into the zero-age main-sequence. Results. Lithium in M 67 is a tight function of mass for stars more massive than the Sun, apart from a few outliers. A plateau in lithium abundances is observed for turn-off stars. Both less massive (M >= 1.10 M-circle dot) and more massive (M >= 1.28 M-circle dot) stars are more depleted than those in the plateau. There is a significant scatter in lithium abundances for any given mass M <= 1.1 M-circle dot. Conclusions. Our models qualitatively reproduce most of the features described above, although the predicted depletion of lithium is 0.45 dex smaller than observed for masses in the plateau region, i.e. between 1.1 and 1.28 solar masses. More work is clearly needed to accurately reproduce the observations. Despite hints that chromospheric activity and rotation play a role in lithium depletion, no firm conclusion can be drawn with the presently available data.
Resumo:
Although lithium has been the first line agent in the treatment of bipolar disorder (BD), few studies have evaluated lithium's efficacy in mania with psychosis and its association with later response. Furthermore, given the widespread concern about antipsychotic side effects, answering a question about whether lithium alone can manage to treat both psychotic and non-psychotic mania seems a very relevant one. The present study addresses the antipsychotic efficacy of lithium monotherapy in acute mania and early improvement of psychotic symptoms as a predictor of later response of manic symptoms. Forty-six patients presenting a manic episode (32 with psychotic features and 14 subjects without psychotic features) were treated for 4 weeks with lithium monotherapy and evaluated weekly using the Young Mania Rating Scale (YMRS). Subjects with rapid cycling, substance abuse/dependence, or mixed episodes were excluded. The overall antimanic efficacy of lithium in psychosis vs. non-psychosis groups was evaluated. In addition, early improvement of psychotic symptoms and its prediction of subsequent response (>50% decrease in total YMRS scores) or remission were evaluated. Lithium showed a similar efficacy in both psychosis and non-psychosis mania. Early improvement of psychotic symptoms was associated with clinical response and remission at endpoint. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Molecular dynamics simulations have been performed for ionic liquids based on a ternary mixture of lithium and ammonium cations and a common anion, bis(trifluoromethylsulfonyl)imide, [Tf2N](-). We address structural changes resulting from adding Li+ in ionic liquids with increasing length of an ether-functionalized chain in the ammonium cation. The calculation of static structure factors reveals the lithium effect on charge ordering and intermediate range order in comparison with the neat ionic liquids. The charge ordering is modified in the lithium solution because the coordination of [Tf2N](-) toward Li+ is much stronger than ammonium cations. Intermediate range order is observed in neat ionic liquids based on ammonium cations with a long chain, but in the lithium solutions, there is also a nonhomogenous distribution of Li+ cations. The presence of Li+ enhances interactions between the ammonium cations due to correlations between the oxygen atom of the ether chain and the nitrogen atom of another ammonium cation.
Resumo:
We have studied, via laser absorption spectroscopy, the velocity distribution of Li-7 atoms released from cryogenic matrices of solid neon or molecular hydrogen. The Li atoms are implanted into the Ne or H-2 matrices - grown onto a sapphire substrate - by laser ablation of a solid Li or LiH precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms. With a NiCr film resistor deposited directly onto the sapphire substrate we are able to transfer high instantaneous power to the matrix, thus reaching a fast sublimation regime. In this regime the Li atoms can get entrained in the released matrix gas, and we were also able to achieve matrix sublimation times down to 10 mu s for both H-2 or Ne matrix, enabling us to proceed with the trapping of the species of our interest such as atomic hydrogen, lithium, and molecules. The sublimation of the H-2 matrix, with its large center-of-mass velocity, provides evidence for a new regime of one-dimensional thermalization. The laser ablated Li seems to penetrate the H-2 matrix deeper than it does in Ne. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704125]
Resumo:
Abstract Background:The treatment of bipolar disorder (BD) remains a challenge due to the complexity of the disease. Current guidelines represent an effort to assist clinicians in routine practice but have several limitations, particularly concerning long-term treatment. The ARIQUELI (efficacy and tolerability of the combination of lithium or aripiprazole in young bipolar non or partial responders to quetiapine monotherapy) study aims to evaluate two different augmentation strategies for quetiapine nonresponders or partial responders in acute and maintenance phases of BD treatment. Methods/Design: The ARIQUELI study is a single-site, parallel-group, randomized, outcome assessor-blinded trial. BD I patients according to the DSM-IV-TR, in depressive, manic/hypomanic or mixed episode, aged 18 to 40 years, are eligible. After diagnostic assessments, patients initiated treatment in phase I with quetiapine. Nonresponders or partial responders after 8 weeks are allocated into one of two groups, potentiated with either lithium (0.5 to 0.8 mEq/l) or aripiprazole (10 or 15 mg). Patients will be followed up for 8 weeks in phase I (acute treatment), 6 months in phase II (continuation treatment) and 12 months in phase III (maintenance treatment). Outcome assessors are blinded to the treatment. The primary outcome is the evaluation of changes in mean scores on the CGI-BP-M between baseline and the endpoint at the end of each study phase. Discussion: The ARIQUELI study is currently in progress, with patients undergoing acute treatment (phase I), potentiation (phase II) and maintenance (phase III). The study will be extended until January 2015. Trials comparing lithium and aripiprazole with potentiate treatment in young BD I nonresponders to quetiapine in monotherapy can provide relevant information on the safety of these drugs in clinical practice. Long-term treatment is an issue of great importance and should be evaluated further through more in-depth studies given that BD is a chronic disease. Trial registration: ClinicalTrials.gov identifier: NCT01710163
Resumo:
[EN]This paper presents our research about nucleation and its dependency with external conditions, as well as the internal characteristics of the solution itself. Among the research lines of our group, we has been studying the influence of electric fields over two different but related compounds: Lithium-Potassium Sulfate and Lithium-Amonium Sulfate, which both of them show a variation on the nucleation ratio when an electric field is applied during the crystal growth. Moreover, in this paper will be explained a laboratory protocol to teach universitary Science students the nucleation process itself and how it depends on external applied conditions, e.g. electric fields.
Resumo:
The development of safe, high energy and power electrochemical energy-conversion systems can be a response to the worldwide demand for a clean and low-fuel-consuming transport. This thesis work, starting from a basic studies on the ionic liquid (IL) electrolytes and carbon electrodes and concluding with tests on large-size IL-based supercapacitor prototypes demonstrated that the IL-based asymmetric configuration (AEDLCs) is a powerful strategy to develop safe, high-energy supercapacitors that might compete with lithium-ion batteries in power assist-hybrid electric vehicles (HEVs). The increase of specific energy in EDLCs was achieved following three routes: i) the use of hydrophobic ionic liquids (ILs) as electrolytes; ii) the design and preparation of carbon electrode materials of tailored morphology and surface chemistry to feature high capacitance response in IL and iii) the asymmetric double-layer carbon supercapacitor configuration (AEDLC) which consists of assembling the supercapacitor with different carbon loadings at the two electrodes in order to exploit the wide electrochemical stability window (ESW) of IL and to reach high maximum cell voltage (Vmax). Among the various ILs investigated the N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR1(2O1)TFSI) was selected because of its hydrophobicity and high thermal stability up to 350 °C together with good conductivity and wide ESW, exploitable in a wide temperature range, below 0°C. For such exceptional properties PYR1(2O1)TFSI was used for the whole study to develop large size IL-based carbon supercapacitor prototype. This work also highlights that the use of ILs determines different chemical-physical properties at the interface electrode/electrolyte with respect to that formed by conventional electrolytes. Indeed, the absence of solvent in ILs makes the properties of the interface not mediated by the solvent and, thus, the dielectric constant and double-layer thickness strictly depend on the chemistry of the IL ions. The study of carbon electrode materials evidences several factors that have to be taken into account for designing performing carbon electrodes in IL. The heat-treatment in inert atmosphere of the activated carbon AC which gave ACT carbon featuring ca. 100 F/g in IL demonstrated the importance of surface chemistry in the capacitive response of the carbons in hydrophobic ILs. The tailored mesoporosity of the xerogel carbons is a key parameter to achieve high capacitance response. The CO2-treated xerogel carbon X3a featured a high specific capacitance of 120 F/g in PYR14TFSI, however, exhibiting high pore volume, an excess of IL is required to fill the pores with respect to that necessary for the charge-discharge process. Further advances were achieved with electrodes based on the disordered template carbon DTC7 with pore size distribution centred at 2.7 nm which featured a notably high specific capacitance of 140 F/g in PYR14TFSI and a moderate pore volume, V>1.5 nm of 0.70 cm3/g. This thesis work demonstrated that by means of the asymmetric configuration (AEDLC) it was possible to reach high cell voltage up to 3.9 V. Indeed, IL-based AEDLCs with the X3a or ACT carbon electrodes exhibited specific energy and power of ca. 30 Wh/kg and 10 kW/kg, respectively. The DTC7 carbon electrodes, featuring a capacitance response higher of 20%-40% than those of X3a and ACT, respectively, enabled the development of a PYR14TFSI-based AEDLC with specific energy and power of 47 Wh/kg and 13 kW/kg at 60°C with Vmax of 3.9 V. Given the availability of the ACT carbon (obtained from a commercial material), the PYR1(2O1)TFSI-based AEDLCs assembled with ACT carbon electrodes were selected within the EU ILHYPOS project for the development of large-size prototypes. This study demonstrated that PYR1(2O1)TFSI-based AEDLC can operate between -30°C and +60°C and its cycling stability was proved at 60°C up to 27,000 cycles with high Vmax up to 3.8 V. Such AEDLC was further investigated following USABC and DOE FreedomCAR reference protocols for HEV to evaluate its dynamic pulse-power and energy features. It was demonstrated that with Vmax of 3.7 V at T> 30 °C the challenging energy and power targets stated by DOE for power-assist HEVs, and at T> 0 °C the standards for the 12V-TSS and 42V-FSS and TPA 2s-pulse applications are satisfied, if the ratio wmodule/wSC = 2 is accomplished, which, however, is a very demanding condition. Finally, suggestions for further advances in IL-based AEDLC performance were found. Particularly, given that the main contribution to the ESR is the electrode charging resistance, which in turn is affected by the ionic resistance in the pores that is also modulated by pore length, the pore geometry is a key parameter in carbon design not only because it defines the carbon surface but also because it can differentially “amplify” the effect of IL conductivity on the electrode charging-discharging process and, thus, supercapacitor time constant.
Resumo:
Nuclear charge radii of short-lived isotopes can be probed in a nuclear-model independent way via isotope shift measurements. For this purpose a novel technique was developed at GSI, Darmstadt. It combines two-photon laser spectroscopy in the 2s-3s electronic transition of lithium, resonance ionization, and detection via quadrupole mass spectrometry. In this way an accuracy of 5e-5 which is necessary for the extraction of nuclear charge radii, and an overall detection efficiency of 1e-4 is reached. This allowed an isotope shift measurement of Li-11 for the first time at the TRIUMF facility in Vancouver. Additionally, uncertainties in the isotope shift for all other lithium isotopes were reduced by about a factor of four compared to previous measurements at GSI. Results were combined with recent theoretical mass shift calculations in three-electron systems and root-mean-square nuclear charge radii of all lithium isotopes, particulary of the two-neutron halo nucleus Li-11, were determined. Obtained charge radii decrease continuously from Li-6 to Li-9, while a strong increase between Li-9 and Li-11 is observed. This is compared to predictions of various nuclear models and it is found that a multicluster model gives the best overall agreement. Within this model, the increase in charge radius between Li-9 and Li-11is to a large extend caused by intrinsic excitation of the Li-9-like core while the neutron-halo correlation contributes only to a small extend.
Resumo:
The subject of the presented thesis is the accurate measurement of time dilation, aiming at a quantitative test of special relativity. By means of laser spectroscopy, the relativistic Doppler shifts of a clock transition in the metastable triplet spectrum of ^7Li^+ are simultaneously measured with and against the direction of motion of the ions. By employing saturation or optical double resonance spectroscopy, the Doppler broadening as caused by the ions' velocity distribution is eliminated. From these shifts both time dilation as well as the ion velocity can be extracted with high accuracy allowing for a test of the predictions of special relativity. A diode laser and a frequency-doubled titanium sapphire laser were set up for antiparallel and parallel excitation of the ions, respectively. To achieve a robust control of the laser frequencies required for the beam times, a redundant system of frequency standards consisting of a rubidium spectrometer, an iodine spectrometer, and a frequency comb was developed. At the experimental section of the ESR, an automated laser beam guiding system for exact control of polarisation, beam profile, and overlap with the ion beam, as well as a fluorescence detection system were built up. During the first experiments, the production, acceleration and lifetime of the metastable ions at the GSI heavy ion facility were investigated for the first time. The characterisation of the ion beam allowed for the first time to measure its velocity directly via the Doppler effect, which resulted in a new improved calibration of the electron cooler. In the following step the first sub-Doppler spectroscopy signals from an ion beam at 33.8 %c could be recorded. The unprecedented accuracy in such experiments allowed to derive a new upper bound for possible higher-order deviations from special relativity. Moreover future measurements with the experimental setup developed in this thesis have the potential to improve the sensitivity to low-order deviations by at least one order of magnitude compared to previous experiments; and will thus lead to a further contribution to the test of the standard model.
Resumo:
Im Rahmen dieser Dissertation wurden ternäre Li-haltige Halb-Heusler Verbindungen sowie dazu strukturell-verwandte Verbindungen untersucht. Diese Verbindungen sind potentielle Kandidaten für optoelektronische und spintronische Anwendungen.rnEinige der untersuchten Verbindungen sind auch als Elektroden Materialien inrnLi-Batterien geeignet. Neben der Synthese und der Untersuchung der chemischenrnEigenschaften wurden daher insbesondere die physikalischen Eigenschaften näherrnuntersucht. Im speziellen wurden Halb-Heusler Verbindungen wie LiMgZ (Z = P,rnAs, Sb) und LiZn1−xMnxP synthetisiert und charakterisiert. Des Weiteren wurdenrndie Verbindungen LiMnAs, LaOMnAs und LiCuS näher studiert.rnVerbindungen des Typs LiMgZ (Z = P, As, Sb) sind potentielle Anode-Materialienrnin Li-Batterien. Im Rahmen der Arbeit gelang es diese Verbindungen einphasig zurnsynthetisieren. Mit Hilfe der UV-VIS Spektroskopie wurden Bandlücken im Bereichrnvon 0.9 und 2.3 eV bestimmt. 7Li NMR Spektroskopie zeigte eine ausreichende LirnMobilität, die sich mit steigender Temperatur erhöht.rnWeiterhin wurde die Mischkristallserie LiZn1−xMnxP mit x = 0.04, 0.08 und 0.10rnuntersucht. Ziel dieser Arbeit war es aus dem Halbleiter LiZnP durch Dotierungrneinen verdünnten magnetischen Halbleiter herzustellen. Diese Materialien werdenrninsbesondere in der Spintronik benötigt. Optische Messungen zeigten, dass diernDotierung bis x = 0.10 zu einer Reduzierung der Bandlücke von 1.80 eV für LiZnPrnzu 1.18 eV für LiZn0.90Mn0.10P führt. Magnetische Untersuchungen erwiesen paramagnetischesrnCurie-Weiss Verhalten und negative Weiss Konstanten, die auf einernantiferromagnetische Ordnung bei tiefen Temperaturen hindeuten.rnLiMnAs und LaOMnAs sind beides antiferromagnetische Halbleiter, die insbesonderernf¨ur spinelektronische Anwendungen von Bedeutung sind. Die magnetischernStruktur von LiMnAs wurde mit Hilfe der Neutronenbeugung näher untersucht. DiernNeel Temperatur wurde zu 374 K bestimmt. Bei einer Temperatur von T = 768 Krnkommt es zu einer Phasenumwandlung. Die tetragonale Struktur wandelt sich hierrnin einer kubischen Halb-Heusler Phase um. Dichte Funktional Rechnungen sind inrnguter Übereinstimmung mit den experimentellen Werten. Darüberhinaus wurde diernKopplung der magnetischen Momente näher bestimmt.rnrnEine Verbindung der Zusammensetzung LiCuS wurde in der Literatur beschriebenrnals eine Phase, die sich bei der Reaktion von Li mit CuS in Li/CuS Batteriesystemrnbildet. Diese Verbindung ist auch als Ersatz von CdS in Pufferschicht vonrnDünnfilm-Solarzellen von Interesse. Es gelang erstmals diese Verbindung einphasigrnherzustellen. Sie kristallisiert gelb mit der nicht-stöchiometrischen ZusammensetzungrnLi1.1Cu0.9S. Die Kristallstruktur wurde mit Hilfe von NMR, PXRD und Neutronenbeugungrnaufgeklärt. Die Bandlücke wurde aus den optischen Messungenrnvon Dünnschichten bestimmt und beträgt circa 2 eV. Dieser Wert ist in guter Übereinstimmung mit DFT Ergebnissen. Wird der Li-Gehalt erhöht, erhält manrnab circa Li1.7Cu0.3S eine kubische Phase. Sie ist isotyp mit Li2S, die im anti-CaF2 Typ kristallisiert. Diese Verbindung ist ein direkter Halbleiter mit einer Bandlücke von 2.4 eV nach DFT Rechnungen.
Resumo:
Hybrid Elektrodenmaterialien (HEM) sind der Schlüssel zu grundlegenden Fortschritten in der Energiespeicherung und Systemen zur Energieumwandlung, einschließlich Lithium-Ionen-Batterien (LiBs), Superkondensatoren (SCs) und Brennstoffzellen (FCs). Die faszinierenden Eigenschaften von Graphen machen es zu einem guten Ausgangsmaterial für die Darstellung von HEM. Jedoch scheitern traditionelle Verfahren zur Herstellung von Graphen-HEM (GHEM) scheitern häufig an der fehlenden Kontrolle über die Morphologie und deren Einheitlichkeit, was zu unzureichenden Grenzflächenwechselwirkungen und einer mangelhaften Leistung des Materials führt. Diese Arbeit konzentriert sich auf die Herstellung von GHEM über kontrollierte Darstellungsmethoden und befasst sich mit der Nutzung von definierten GHEM für die Energiespeicherung und -umwandlung. Die große Volumenausdehnung bildet den Hauptnachteil der künftigen Lithium-Speicher-Materialien. Als erstes wird ein dreidimensionaler Graphen Schaumhybrid zur Stärkung der Grundstruktur und zur Verbesserung der elektrochemischen Leistung des Fe3O4 Anodenmaterials dargestellt. Der Einsatz von Graphenschalen und Graphennetzen realisiert dabei einen doppelten Schutz gegen die Volumenschwankung des Fe3O4 bei dem elektrochemischen Prozess. Die Leistung der SCs und der FCs hängt von der Porenstruktur und der zugänglichen Oberfläche, beziehungsweise den katalytischen Stellen der Elektrodenmaterialien ab. Wir zeigen, dass die Steuerung der Porosität über Graphen-basierte Kohlenstoffnanoschichten (HPCN) die zugängliche Oberfläche und den Ionentransport/Ladungsspeicher für SCs-Anwendungen erhöht. Desweiteren wurden Stickstoff dotierte Kohlenstoffnanoschichten (NDCN) für die kathodische Sauerstoffreduktion (ORR) hergestellt. Eine maßgeschnittene Mesoporosität verbunden mit Heteroatom Doping (Stickstoff) fördert die Exposition der aktiven Zentren und die ORR-Leistung der metallfreien Katalysatoren. Hochwertiges elektrochemisch exfoliiertes Graphen (EEG) ist ein vielversprechender Kandidat für die Darstellung von GHEM. Allerdings ist die kontrollierte Darstellung von EEG-Hybriden weiterhin eine große Herausforderung. Zu guter Letzt wird eine Bottom-up-Strategie für die Darstellung von EEG Schichten mit einer Reihe von funktionellen Nanopartikeln (Si, Fe3O4 und Pt NPs) vorgestellt. Diese Arbeit zeigt einen vielversprechenden Weg für die wirtschaftliche Synthese von EEG und EEG-basierten Materialien.