915 resultados para liquefied natural gas
Resumo:
Concern about the increasing atmospheric CO2 concentration and its impact on the environment has led to increasing attention directed toward finding advanced materials and technologies suited for efficient CO2 capture, storage and purification of clean-burning natural gas. In this letter, we have performed comprehensive theoretical investigation of CO2, N2, CH4 and H2 adsorption on B2CNTs. Our study shows that CO2 molecules can form strong interactions with B2CNTs with different charge states. However, N2, CH4 and H2 can only form very weak interactions with B2CNTs. Therefore, the study demonstrates B2CNTs could sever as promising materials for CO2 capture and gas separation.
Resumo:
Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.
Resumo:
Coal seam gas (CSG) is a growing industry in Queensland and represents a potential major employer and deliverer of financial prosperity for years to come. CSG is a natural gas composed primarily of methane and is found trapped underground in coal beds. During the gas extraction process, significant volumes of associated water are also produced. This associated water could be a valuable resource, however, the associated water comprises of various salt constituents that make it problematic for beneficial use. Consequently, there is a need to implement various water treatment strategies to purify the associated water to comply with Queensland’s strict guidelines and to mitigate environmental risks. The resultant brine is also of importance as ultimately it also has to be dealt with in an economical manner. In some ways it can be considered that the CSG industry does not face a water problem, as this has inherent value to society, but rather has a “salt issue” to solve. This study analyzes the options involved in both the water treatment and salt recovery processes. A brief overview of the constituents present in Queensland CS water is made to illustrate the challenges involved and a range of treatment technologies discussed. Water treatment technologies examined include clarification (ballasted flocculation, dissolved air flotation, electrocoagulation), membrane filtration (ultrafiltration), ion exchange softening and desalination (ion exchange, reverse osmosis desalination and capacitance deionization). In terms of brine management we highlighted reinjection, brine concentration ponds, membrane techniques (membrane distillation, forward osmosis), thermal methods, electrodialysis, electrodialysis reversal, bipolar membrane electrodialysis, wind assisted intensive evaporation, membrane crystallization, eutectic freeze crystallization and vapor compression. As an entirety this investigation is designed to be an important tool in developing CS water treatment management strategies for effective management in Queensland and worldwide.
Resumo:
Nanocrystalline tin oxide powder was prepared using a solution precipitation technique after adding the surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT). Powders were characterized using X-ray diffraction (XRD), surface area (BET) and transmission electron microscopy (TEM). The gas sensitivity for surfactant added powders increased for liquid petroleum gas (LPG) as well as compressed natural gas (CNG), due to the decreased particle size and the increased surface area. The LPG gas sensitivity increased several times using phosphorus treated surfactant AOT.
Resumo:
This article presents the studies conducted on turbocharged producer gas engines designed originally for natural gas (NG) as the fuel. Producer gas, whose properties like stoichiometric ratio, calorific value, laminar flame speed, adiabatic flame temperature, and related parameters that differ from those of NG, is used as the fuel. Two engines having similar turbochargers are evaluated for performance. Detailed measurements on the mass flowrates of fuel and air, pressures and temperatures at various locations on the turbocharger were carried out. On both the engines, the pressure ratio across the compressor was measured to be 1.40 +/- 0.05 and the density ratio to be 1.35 +/- 0.05 across the turbocharger with after-cooler. Thermodynamic analysis of the data on both the engines suggests a compressor efficiency of 70 per cent. The specific energy consumption at the peak load is found to be 13.1 MJ/kWh with producer gas as the fuel. Compared with the naturally aspirated mode, the mass flow and the peak load in the turbocharged after-cooled condition increased by 35 per cent and 30 per cent, respectively. The pressure ratios obtained with the use of NG and producer gas are compared with corrected mass flow on the compressor map.
Resumo:
In the present work, the thermal efficiency of a conventional domestic burner is studied both experimentally and numerically for liquefied petroleum gas (LPG) and piped natural gas (PNG) fuels. Three-dimensional computational fluid dynamic (CFD) modeling of the steady-state flow, combustion and heat transfer to the vessel is reported for the first time in such burners. Based on the insights from the CFD model concerning the flow and heat transfer, design modifications in the form of a circular insert and a radiant sheet are proposed which are observed to increase thermal efficiency for LPG. For PNG, predictions showed that loading height was a much more important factor affecting efficiency than these design modifications and an optimal loading height could be identified. Experiments confirm these trends by showing an improvement in burner thermal efficiency of 2.5% for LPG with the modified design, and 10% for PNG with the optimal loading height, demonstrating that the CFD modeling approach developed in the present work is a useful tool to study domestic burners. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The current work addresses the use of producer gas, a bio-derived gaseous alternative fuel, in engines designed for natural gas, derived from diesel engine frames. Impact of the use of producer gas on the general engine performance with specific focus on turbo-charging is addressed. The operation of a particular engine frame with diesel, natural gas and producer gas indicates that the peak load achieved is highest with diesel fuel (in compression ignition mode) followed by natural gas and producer gas (both in spark ignite mode). Detailed analysis of the engine power de-rating on fuelling with natural gas and producer gas indicates that the change in compression ratio (migration from compression to spark ignited mode), difference in mixture calorific value and turbocharger mismatch are the primary contributing factors. The largest de-rating occurs due to turbocharger mismatch. Turbocharger selection and optimization is identified as the strategy to recover the non-thermodynamic power loss, identified as the recovery potential (the loss due to mixture calorific value and turbocharger mismatch) on operating the engine with a fuel different from the base fuel. A turbocharged after-cooled six cylinder, 5.9 l, 90 kWe (diesel rating) engine (12.2 bar BMEP) is available commercially as a naturally aspirated natural gas engine delivering a peak load of 44.0 kWe (6.0 bar BMEP). The engine delivers a load of 27.3 kWe with producer gas under naturally aspirated mode. On charge boosting the engine with a turbocharger similar in configuration to the diesel engine turbocharger, the peak load delivered with producer gas is 36 kWe (4.8 bar BMEP) indicating a de-rating of about 60% over the baseline diesel mode. Estimation of knock limited peak load for producer gas-fuelled operation on the engine frame using a Wiebe function-based zero-dimensional code indicates a knock limited peak load of 76 kWe, indicating the potential to recover about 40 kWe. As a part of the recovery strategy, optimizing the ignition timing for maximum brake torque based on both spark sweep tests and established combustion descriptors and engine-turbocharger matching for producer gas-fuelled operation resulted in a knock limited peak load of 72.8 kWe (9.9 bar BMEP) at a compressor pressure ratio of 2.30. The de-rating of about 17.0 kWe compared to diesel rating is attributed to the reduction in compression ratio. With load recovery, the specific biomass consumption reduces from 1.2 kg/kWh to 1.0 kg/kWh, an improvement of over 16% while the engine thermal efficiency increases from 28% to 32%. The thermodynamic analysis of the compressor and the turbine indicates an isentropic efficiency of 74.5% and 73%, respectively.
Resumo:
The concept of barrel stratification of air-fuel mixture is evaluated for a port gas injection (PGI) single cylinder spark ignition (SI) internal combustion (IC) engine using a transient three-dimensional computational fluid dynamic (CFD) model. The gaseous fuel used in the study is compressed natural gas (CNG). It is observed that compared to the premixed gas carburettor case, a substantial amount of in-cylinder stratification can be achieved with port gas injection system. A detailed parametric study is reported to understand the effect of the various injection parameters such as injection location, injection orientation, start of injection (SOT) and its duration, and injection rate. Furthermore, the best injection timing is evaluated for various load and speed cases. It is observed that the best stratification pattern can be achieved at 50% engine load. The injection location is observed to have a profound effect on the in-cylinder stratification pattern, and injection towards the side of the spark plug is observed to give a rich fuel-air mixture near the spark plug. It is also shown that there exists an optimal injection pressure.
Resumo:
The sensitivity of combustion phasing and combustion descriptors to ignition timing, load and mixture quality on fuelling a multi-cylinder natural gas engine with bio-derived H-2 and CO rich syngas is addressed. While the descriptors for conventional fuels are well established and are in use for closed loop engine control, presence of H-2 in syngas potentially alters the mixture properties and hence combustion phasing, necessitating the current study. The ability of the descriptors to predict abnormal combustion, hitherto missing in the literature, is also addressed. Results from experiments using multi-cylinder engines and numerical studies using zero dimensional Wiebe function based simulation models are reported. For syngas with 20% H-2 and CO and 2% CH4 (producer gas), an ignition retard of 5 +/- 1 degrees was required compared to natural gas ignition timing to achieve peak load of 72.8 kWe. It is found that, for syngas, whose flammability limits are 0.42-1.93, the optimal engine operation was at an equivalence ratio of 1.12. The same methodology is extended to a two cylinder engine towards addressing the influence of syngas composition, especially H-2 fraction (varying from 13% to 37%), on the combustion phasing. The study confirms the utility of pressure trace derived combustion descriptors, except for the pressure trace first derivative, in describing the MBT operating condition of the engine when fuelled with an alternative fuel. Both experiments and analysis suggest most of the combustion descriptors to be independent of the engine load and mixture quality. A near linear relationship with ignition angle is observed. The general trend(s) of the combustion descriptors for syngas fuelled operation are similar to those of conventional fuels; the differences in sensitivity of the descriptors for syngas fuelled engine operation requires re-calibration of control logic for MBT conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
Resumo:
A partir de uma pesquisa histórica sobre a regulação da atividade petrolífera nacional, constatou-se que as jazidas de petróleo e de gás natural são bens públicos cuja exploração é constitucionalmente reservada ao Estado. Ademais, a delegação da exploração desses bens, por meio de concessão ou de partilha de produção, mantém a propriedade estatal desses recursos naturais.
Resumo:
26 p.
Resumo:
Petróleo e gás natural são recursos naturais não renováveis que possuem grande participação na matriz energética mundial e tendência de crescimento na matriz nacional, cujo marco regulatório limita-se a definir critérios técnicos e procedimentais sem incorporar o modelo de sustentabilidade instituído pela Constituição Federal de 1988. A natureza finita dos recursos não renováveis, como o petróleo e o gás natural, exige uma visão do planejamento de sua exploração de longo prazo na definição dos objetivos e metas. Essa perspectiva de longo prazo traduz uma das preocupações do desenvolvimento sustentável: a garantia de direitos para as futuras gerações. Assim, ao procurar fornecer elementos para a tradução do modelo de desenvolvimento sustentável no arcabouço institucional e legal da indústria petrolífera vigente no Brasil, o presente trabalho busca contribuir para o aprimoramento da regulação petrolífera nacional e a qualidade de vida das gerações presentes e futuras. E, mais do que propor a elaboração de um projeto de lei, como modalidade de implantação de uma política pública, queremos contribuir para o fortalecimento das práticas e ações governamentais voltadas para a aplicação do desenvolvimento sustentável, consoante apregoa a Constituição Federal brasileira. Trata-se aqui de demonstrar, através de metodologia quali-quantitativa, a tese de que é possível incorporar o princípio constitucional de desenvolvimento sustentável na atividade de exploração e produção de petróleo e gás natural, formulando uma política pública que incorpore, no regime de propriedade do petróleo, a variável ambiental e o uso intergeracional que já haviam sido e continuam sendo aplicados a algumas fontes renováveis de energia. Inicialmente, identificamos a composição da matriz energética brasileira desde a inserção do petróleo como uma questão de Estado a partir dos anos 50 do século XX. Em seguida, analisamos a concepção legal e doutrinária para propor, então, a conceituação de um modelo de desenvolvimento energético sustentável, estruturante para a proposição de uma política nacional para a indústria petrolífera. Com base nessa conceituação, analisamos o marco regulatório e os procedimentos institucionais praticados atualmente para identificar as lacunas existentes no ordenamento a serem supridas pela política nacional proposta. A partir da análise dos contextos legal e institucional, e das políticas energética e ambiental, propomos a tradução de conceitos, objetivos, princípios e instrumentos num projeto de lei de Política Nacional de Uso Sustentável das Reservas de Petróleo e Gás Natural. Concluímos tecendo considerações gerais e específicas sobre a proposição aqui formulada com vistas ao aprimoramento do modelo nacional de gestão de recursos energéticos e ao fomento das discussões voltadas para a sustentabilidade das políticas públicas e as práticas privadas enraizadas na exploração irracional de recursos não renováveis
Resumo:
A análise da matriz energética mundial, assim como a brasileira, nos mostra que o gás natural representará em breve um importante insumo energético favorecendo a balança de pagamentos nacional, visto que o gás poderá ser usado tanto para consumo interno, quanto para exportação. O aumento das reservas nacionais de hidrocarbonetos se deve ao desenvolvimento de tecnologias, que favoreceram o conhecimento das bacias brasileiras quanto ao seu potencial produtor de combustíveis fósseis, permitindo a descoberta de novas jazidas. O amadurecimento do mercado nacional quanto ao consumo de gás natural passa pela construção de uma infraestrutura robusta, eficiente e que possibilite a captação, o armazenamento e distribuição do mesmo. O Brasil tem todos os requisitos necessários para adentrar ao seleto grupo de países exportadores de hidrocarbonetos, a descoberta do Pré-sal tende a incrementar a importância do gás natural para o país. Ao final do trabalho são descritos cenários futuros (quanto o consumo de energéticos), onde se vê que o consumo de energia para os próximos anos crescerá a taxas superiores as das duas últimas décadas. Análise destes cenários permite antecipar o interesse de futuros investimentos no desenvolvimento do conhecimento geológico para áreas promissoras.
Resumo:
Este trabalho tem como objetivo estudar a indústria do petróleo, gás natural e biocombustíveis no contexto brasileiro e no mundial. Visa também analisar as vantagens e desvantagens dos biocombustíveis e seu possível impacto na indústria do petróleo, assim como os principais indicativos e projeções da indústria do petróleo, como reserva, produção, preço e consumo, através de coleta de dados e geração de gráficos pesquisados e comparados de grandes agências e empresas de energia. Os biocombustíveis podem ser um grande aliado da indústria do petróleo tendo em vista a duração das reservas mundiais de hidrocarbonetos. O uso dos biocombustíveis implicará no desenvolvimento de tecnologias renováveis e de reutilização de materiais antes descartados, trazendo benefício a toda sociedade. A indústria do petróleo é impactada pelas flutuações no mercado internacional e pela demanda, assim como pela manipulação da produção de combustíveis fósseis pelos países produtores. Esses aspectos apresentados interligados criam uma complexa indústria que a presente dissertação se propõe a analisar.