940 resultados para linear approximation method
Resumo:
Vita.
Resumo:
"(This is being submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics, June 1959.)"
Resumo:
"Contract no. AF 49(638)-700."
Resumo:
Mode of access: Internet.
Resumo:
In the English literature, facial approximation methods have been commonly classified into three types: Russian, American, or Combination. These categorizations are based on the protocols used, for example, whether methods use average soft-tissue depths (American methods) or require face muscle construction (Russian methods). However, literature searches outside the usual realm of English publications reveal key papers that demonstrate that the Russian category above has been founded on distorted views. In reality, Russian methods are based on limited face muscle construction, with heavy reliance on modified average soft-tissue depths. A closer inspection of the American method also reveals inconsistencies with the recognized classification scheme. This investigation thus demonstrates that all major methods of facial approximation depend on both face anatomy and average soft-tissue depths, rendering common method classification schemes redundant. The best way forward appears to be for practitioners to describe the methods they use (including the weight each one gives to average soft-tissue depths and deep face tissue construction) without placing them in any categorical classificatory group or giving them an ambiguous name. The state of this situation may need to be reviewed in the future in light of new research results and paradigms.
Resumo:
The main purpose of this article is to gain an insight into the relationships between variables describing the environmental conditions of the Far Northern section of the Great Barrier Reef, Australia, Several of the variables describing these conditions had different measurement levels and often they had non-linear relationships. Using non-linear principal component analysis, it was possible to acquire an insight into these relationships. Furthermore. three geographical areas with unique environmental characteristics could be identified. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional parabolic inverse Cauchy–Stefan problem, where boundary data and the initial condition are to be determined from the Cauchy data prescribed on a given moving interface. In [B.T. Johansson, D. Lesnic, and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan Problem, Appl. Math Model. 35 (2011), pp. 4367–4378], the inverse Stefan problem was considered, where only the boundary data is to be reconstructed on the fixed boundary. We extend the MFS proposed in Johansson et al. (2011) and show that the initial condition can also be simultaneously recovered, i.e. the MFS is appropriate for the inverse Cauchy-Stefan problem. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be efficiently obtained with small computational cost.
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.
Resumo:
We consider a finite state automata based method of solving a system of linear Diophantine equations with coefficients from the set {-1,0,1} and solutions in {0,1}.
Resumo:
The paper describes a learning-oriented interactive method for solving linear mixed integer problems of multicriteria optimization. The method increases the possibilities of the decision maker (DM) to describe his/her local preferences and at the same time it overcomes some computational difficulties, especially in problems of large dimension. The method is realized in an experimental decision support system for finding the solution of linear mixed integer multicriteria optimization problems.
Resumo:
The paper describes a classification-based learning-oriented interactive method for solving linear multicriteria optimization problems. The method allows the decision makers describe their preferences with greater flexibility, accuracy and reliability. The method is realized in an experimental software system supporting the solution of multicriteria optimization problems.