961 resultados para light-matter interaction
Resumo:
The rule of light on the timing of maturation and spawning in tropical and subtropical regions is not clear well, because the reproductive cycle in these systems is lunar synchronized. In this study, thus, the effects of different light regimes were investigated on maturational progress of whitespotted rabbitfish, Siganus sutor, the commercial species in Persian Gulf and Oman Sea. During prespawning season, 50 adult fish were randomly divided into ten 300-l tanks (n=5). The fish in control tank received indoor light condition and the fish in each other tanks were exposed to nine different combinations of photoperiod (8L: 16D, 12L: 12D, 16L: 8D) and light intensity (1000, 2000, 3000 lux). After 60 days, GSI and HSI values, serum levels of estradiol (E2), testosterone (T), 17-α hydroxyprogestrone (OHP), calcium (Ca2+) and gonad histology were evaluated for females and males. In females the GSI mean values of exposed fish increased in comparison with control except for fish were kept under 8L, 2000 lux (tank 8). These differences were significant only for fishes in tank 7 (8L, 3000 lux). In the cases of HSI, the results were converse, so that, the most of thanks showed significant decreasing than fishes reared under indoor condition. Morphology and histology study of Ovaries showed three developmental phases including 3, 4 and chiefly 5 that were parallel with GSI values. Fortheremore the serum levels of E2 was recorded between 0.54-15.8 ng/ml in different fish and their mean values were lower than control in all treatmants (P> 0.05). In males, the similar results were obtained. The GSI and HSI mean values in experimental regimes compared with control were upper and lower, respectively, except for fishes were reared in tank 1 (16L, 3000 lux). Testes histology of fishes were reared under different regimes showed signs of stage 5, since no blood vessels observed and thick milt exuded on slight pressure. The mean values of testosterone consentration in fishes were kept in tanks 1 and 6 (12L, 1000 lux) were higher and in other ones were lower than control group. It is also noted that the OHP and Ca2+ had diverse results including increasing and decreasing mean values than control. So, these factors contrary to E2 and T were not suitable to evaluation of maturity in both sexes. On the basis of ovarian structure in stage 5, oocyte development pattern in this species was group synchronous. So, increased mean of GSI versus decreased values of HSI, E2 and perhaps Ca2+ were the signs of improved maturation. But in males, reduced levels of T and similarity of testes morphology in all samples caused that GSI mean value was the only indicator for differentiating among treatments. These findings suggest that alternations were used in light regimes have been the reason of improved maturity in all treatments except fishes reared in tank 8. The ١٠٧ rule of light intensity on induction of maturity was cleared by comparision between fishes in tanks 4, 5, 6 and control group. Because day length was the same whereas fishes in tanks 4, 5 and 6 were exposed to increased light intensity compared with control. This fact verified by results was obtained from fishes in tanks 9 and especially 7, since photoperiod in this group was lower than control. So, higher intensity was considered as the reason of alternations. Contrasting with indoor condition, Induced maturity was also cleared for fishes were kept in tanks 1, 2 and 3, where both of light duration and intensity were increased. But, the rule of photoperiod was individually demonstrated when obtained results were compared with similar light intensities in other treatments. In conclusion, with comparison among different light regimes it is declared that siganids were kept under light condition of tank 2 including 16h light duration combined with 2000 lux intensity showed the best signs of sexual maturation in both sexes. On the basis of this study, setting up the spring light condition during prespawning season induces maturation in withspotted rabbitfish. This improvement not only by influence of photoperiod or light intensity, separately, but obtained through interaction between them. Thus, determination of threshold and resistance to light be recommended before exposure, although using proper regime during suitable time are necessary to achieve purposes considerably.
Resumo:
Chemical looping combustion (CLC) uses a metal oxide (the oxygen carrier) to provide oxygen for the combustion of a fuel and gives an inherent separation of pure CO2 with minimal energy penalty. In solid-fuel CLC, volatile matter will interact with oxygen carriers. Here, the interaction between iron-based oxygen carriers and a volatile hydrocarbon (n-heptane) was investigated in both a laboratory-scale fluidised bed and a thermogravimetric analyser (TGA). Experiments were undertaken to characterise the thermal decomposition of the n-heptane occurring in the presence and in the absence of the oxygen carrier. In a bed of inert particles, carbon deposition increased with temperature and acetylene appeared as a possible precursor. For a bed of carrier consisting of pure Fe2O3, carbon deposition occurred once the Fe2O3 was fully reduced to Fe. When the Fe2O3 was doped with 10 mol % Al2O3 (Fe90Al), deposition started when the carrier was reduced to a mixture of Fe and FeAl2O4, the latter being very unreactive. Furthermore, when pure Fe2O3 was fully reduced to Fe, agglomeration of the fluidised bed occurred. However, Fe90Al did not give agglomeration even after extended reduction. The results suggest that Fe90Al is promising for the CLC of solid fuels. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
We report the enhancement of sub-bandgap photoluminescence from silicon via the Purcell effect. We couple the defect emission from silicon, which is believed to be due to hydrogen incorporation into the lattice, to a photonic crystal (PhC) nanocavity. We observe an up to 300-fold enhancement of the emission at room temperature at 1550 nm, as compared to an unpatterned sample, which is then comparable to the silicon band-edge emission. We discuss the possibility of enhancing this emission even further by introducing additional defects by ion implantation, or by treating the silicon PhC nanocavity with hydrogen plasma. © 2011 Elsevier B.V.
Resumo:
The attenuation coefficient of photosynthetically available radiation [K-d(PAR)] and three water quality parameters [chlorophyll a (chl a)], chromophoric dissolved organic matter (CDOM) and tripton] were measured at three stations in shallow, subtropical Lake Donghu from April 2003 to March 2004. The multiple regression equation of K-d(PAR) versus chl a, CDOM, and tripton was: K-d(PAR) = 0.44 + 0.019 chl a + 1.88 CDOM + 0.016 tripton, which revealed the relative contributions of the three parameters to K-d(PAR). The effects of water and CDOM on K-d(PAR) were of minor importance (19-26%), while chl a and tripton were the two greatest contributors, accounting collectively for 74-81%.
Resumo:
An exact property is established for the Green's function of a uniform two-dimensional interacting electron gas in a perpendicular magnetic field with spin-orbit interaction. It is shown that the spin-diagonal Green's function is exactly diagonal in the Landau level index even in the presence of electron-electron interactions. For the Green's function with different spin indexes, only that with adjacent Landau level indexes is non-zero. This exact result should be helpful in calculating the Green's function approximately.
Resumo:
This paper presents a new concept of frequency coherence in the frequency-time domain to describe the field correlations between two lightwaves with different frequencies. The coherence properties of the modulated beams from lightwave sources with different spectral widths and the modes of Fabry-Wrot (FP) laser are investigated. It is shown that the lightwave and its corresponding sidebands produced by the optical intensity modulation are perfectly coherent. The measured linewidth of the beat signal is narrow and almost identical no matter how wide the spectral width of the beam is. The frequency spacing of the adjacent FP modes is beyond the operation frequency range of the measurement instruments. In our experiment, optical heterodyne technique is used to investigate the frequency coherence of the modes of FP laser by means of the frequency shift induced by the optical intensity modulation. Experiments show that the FP modes are partially coherent and the mode spacing is relatively fixed even when the wavelength changes with ambient temperature, bias current and other factors. Therefore, it is possible to generate stable and narrow-linewidth signals at frequencies corresponding to several mode intervals of the laser.
Resumo:
A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The 3PF2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner–Hartree–Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleon-nucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3PF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries.As a consequence, the neutron 3PF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.
Resumo:
We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes smaller than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction.
Resumo:
By using the new experimental data of Lambda Lambda potential, this paper has performed a full calculation for strange hadronic matter with different strangeness contents as well as its consequences on the global properties of neutron star matter in relativistic mean field model. It finds that the new weak hyperon - hyperon interaction makes the equations of state much stiffer than the result of the previous strong hyperon-hyperon interaction, and even stiffer than the result without consideration of hyperon -hyperon interaction. This new hyperon -hyperon interaction results in a maximum mass of 1.75M(circle dot) ( where M-circle dot stands for the mass of the Sun), about 0.2-0.5M(circle dot) larger than the previous prediction with the presence of hyperons. After examining carefully the onset densities of kaon condensation it finds that this new weak version of hyperon -hyperon interaction favours the occurrence of kaons in comparison with the strong one.