851 resultados para levers of control
Resumo:
We analyse the cost of controlling the invasive quinine tree Cinchona pubescens Vahl in the highlands of Santa Cruz Island, Galapagos. Control costs in ten 400 m2 plots formed the basis for estimating the cost of control over the whole island. In the plots, densities were 2100–24,000 stems/ha (stems >150 cm tall) and 55,000–138,000 stems/ha (all size classes combined). Control involved uprooting small plants, and applying of a mix of metsulfuron methyl and picloram to cut stumps or to machete cuts in the bark of larger trees. These methods are presently used by Galapagos National Park field crews to control quinine. Costs (in man hours, herbicide and US$) were related to stem density; the density of stems summed across four height classes was a better predictor of costs than density of any one size class. Regressions (on all size classes combined) formed the basis for predictive models of costs. Costs ranged from $14 to $2225 per ha depending on stem density. The amount of herbicide (active ingredient/ha) that must be applied to high density stands of quinine is higher than typical rates of application in an agricultural setting. The cost of treating all existing plants once across quinine’s known range on Santa Cruz Island (c. 11,000 ha) was estimated at c. US$1.65 million. CDF Contribution Number 1013.
Resumo:
A novel supersonic wind tunnel setup is proposed to enable the investigation of control on a normal shock wave. Previous experimental arrangements were found to suffer from shock instability. Wind tunnel tests with and without control have confirmed the capability of the new setup to stabilise a shock structure at a target position without changing the nature of the shock wave / boundary layer interaction flow at M∞ = 1.3 and M ∞ = 1.5. Flow visualisation and pressure measurements with the new setup have revealed detailed characteristics of shock wave / boundary layer interactions and a λ-shock structure as well as benefits of control in total drag reduction in the presence of 3D bump control.
Resumo:
The purpose of this paper is to highlight the central role that the time asymmetry of stability plays in feedback control. We show that this provides a new perspective on the use of doubly-infinite or semi-infinite time axes for signal spaces in control theory. We then focus on the implication of this time asymmetry in modeling uncertainty, regulation and robust control. We point out that modeling uncertainty and the ease of control depend critically on the direction of time. We finally discuss the relationship of this control-based time arrow with the well-known arrows of time in physics. © 2008 IEEE.
Resumo:
Canned and frozen prawns are subjected to compulsory pre-shipment inspection, during which compliance of the products with their declared drained weights is verified. The materials used in the processing of these products being biological in origin, the drained weights are susceptible to variation due to a number of factors. Since determination of the drained weights involves destructive and time consuming procedures, application of control chart for drained weights on the processing line is not possible. The present study has shown that gross weights of the products are significantly correlated with their drained weights and since the determination of the former does not have the disadvantages of determination of the latter, the drained weights can be controlled through the application of control chart for the gross weights.
Resumo:
Electron tunnelling through semiconductor tunnel barriers is exponentially sensitive to the thickness of the barrier layer, and in the most common system, the AlAs tunnel barrier in GaAs, a one monolayer variation in thickness results in a 300% variation in the tunnelling current for a fixed bias voltage. We use this degree of sensitivity to demonstrate that the level of control at 0.06 monolayer can be achieved in the growth by molecular beam epitaxy, and the geometrical variation of layer thickness across a wafer at the 0.01 monolayer level can be detected.
Resumo:
Model predictive control allows systematic handling of physical and operational constraints through the use of constrained optimisation. It has also been shown to successfully exploit plant redundancy to maintain a level of control in scenarios when faults are present. Unfortunately, the computational complexity of each individual iteration of the algorithm to solve the optimisation problem scales cubically with the number of plant inputs, so the computational demands are high for large MIMO plants. Multiplexed MPC only calculates changes in a subset of the plant inputs at each sampling instant, thus reducing the complexity of the optimisation. This paper demonstrates the application of multiplexed model predictive control to a large transport airliner in a nominal and a contingency scenario. The performance is compared to that obtained with a conventional synchronous model predictive controller, designed using an equivalent cost function. © 2012 AACC American Automatic Control Council).
Resumo:
This paper investigates how the efficiency and robustness of a skilled rhythmic task compete against each other in the control of a bimanual movement. Human subjects juggled a puck in 2D through impacts with two metallic arms, requiring rhythmic bimanual actuation. The arms kinematics were only constrained by the position, velocity and time of impacts while the rest of the trajectory did not influence the movement of the puck. In order to expose the task robustness, we manipulated the task context in two distinct manners: the task tempo was assigned at four different values (hence manipulating the time available to plan and execute each impact movement individually); and vision was withdrawn during half of the trials (hence reducing the sensory inflows). We show that when the tempo was fast, the actuation was rhythmic (no pause in the trajectory) while at slow tempo, the actuation was discrete (with pause intervals between individual movements). Moreover, the withdrawal of visual information encouraged the rhythmic behavior at the four tested tempi. The discrete versus rhythmic behavior give different answers to the efficiency/robustness trade-off: discrete movements result in energy efficient movements, while rhythmic movements impact the puck with negative acceleration, a property preserving robustness. Moreover, we report that in all conditions the impact velocity of the arms was negatively correlated with the energy of the puck. This correlation tended to stabilize the task and was influenced by vision, revealing again different control strategies. In conclusion, this task involves different modes of control that balance efficiency and robustness, depending on the context. © 2008 Springer-Verlag.
Resumo:
Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The quantum coherence control of a solid-state charge qubit is studied by using a suboptimal continuous feedback algorithm within the Bayesian feedback scheme. For the coherent Rabi oscillation, the present algorithm suggests a simple bang-bang control protocol, in which the control parameter is modulated between two values. For the coherence protection of the idle state, the present approach is applicable to arbitrary states, including those lying on the equator of the Bloch sphere which are out of control in the previous Markovian feedback scheme.
Resumo:
To improve the sensitivity of our laser radar system, we provided a set of control method for APDs (Avalanched Photodiodes) based on single-chip computer together with the circuits dealing with noise and temperature. It adjusts the voltages intelligently and maintains the APD's optimal working status.
Resumo:
The prospects of control chemical reaction in high-intensity laser field are talked about here, and some experimental and theoretical designs are reviewed and discussed also.
Resumo:
Carbon nanotubes (CNTs) have attracted attention for their remarkable electrical properties and have being explored as one of the best building blocks in nano-electronics. A key challenge to realize such potential is the control of the nanotube growth directions. Even though both vertical growth and controlled horizontal growth of carbon nanotubes have been realized before, the growth of complex nanotube structures with both vertical and horizontal orientation control on the same substrate has never been achieved. Here, we report a method to grow three-dimensional (3D) complex nanotube structures made of vertical nanotube forests and horizontal nanotube arrays on a single substrate and from the same catalyst pattern by an orthogonally directed nanotube growth method using chemical vapor deposition (CVD). More importantly, such a capability represents a major advance in controlled growth of carbon nanotubes. It enables researchers to control the growth directions of nanotubes by simply changing the reaction conditions. The high degree of control represented in these experiments will surely make the fabrication of complex nanotube devices a possibility.
Resumo:
The purpose of this study was to test whether a constant bearing angle strategy could account for the displacement regulations produced by a moving observer when attempting to intercept a ball following a curvilinear path. The participants were asked to walk through a virtual environment and to change, if (deemed) necessary, their walking speed so as to intercept a moving ball that followed either a rectilinear or a curvilinear path. The results showed that ball path curvature did indeed influence the participants' displacement kinematics in a way that was predicted by adherence to a constant bearing angle strategy mode of control. Velocity modifications were found to be proportional to the magnitude of target curvature with opposing curvatures giving rise to mirror displacement velocity changes. The role of prospective strategies in the control of interceptive action is discussed