879 resultados para left ventricular noncompaction cardiomyopathy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Clinical multistage risk assessment associated with electrocardiogram (ECG) and NT-proBNP may be a feasible strategy to screen hypertrophic cardiomyopathy (HCM). We investigated the effectiveness of a screening based on ECG and NT-proBNP in first-degree relatives of patients with HCM. Methods and Results: A total of 106 first-degree relatives were included. All individuals were evaluated by echocardiography, ECG, NT-proBNP, and molecular screening (available for 65 individuals). From the 106 individuals, 36 (34%) had diagnosis confirmed by echocardiography. Using echocardiography as the gold standard, ECG criteria had a sensitivity of 0.71, 0.42, and 0.52 for the Romhilt-Estes, Sokolow-Lyon, and Cornell criteria, respectively. Mean values of NT-ProBNP were higher in affected as compared with nonaffected relatives (26.1 vs. 1290.5, P < .001). The AUC of NT-proBNP was 0.98. Using a cutoff value of 70 pg/mL, we observed a sensitivity of 0.92 and specificity of 0.96. Using molecular genetics as the gold standard, ECG criteria had a sensitivity of 0.67, 0.37, and 0.42 for the Romhilt-Estes, Sokolow-Lyon, and Cornell criteria, respectively. Using a cutoff value of 70 pg/mL, we observed a sensitivity of 0.83 and specificity of 0.98. Conclusion: Values of NT-proBNP above 70 pg/mL can be used to effectively select high-risk first-degree relatives for HCM screening. (J Cardiac Fail 2012;18:564-568)
Resumo:
OBJECTIVE: Chagas' disease has spread throughout Latin America because of the high rate of migration among these countries. Approximately 30% of Chagas' patients will develop cardiomyopathy, and 10% of these will develop severe cardiac damage leading to heart failure. Beta-blockade improves symptoms and survival in heart failure patients; however, its efficacy has not been well established in Chagas' disease. We evaluated the role of carvedilol in cardiac remodeling and mortality in a Chagas' cardiomyopathy animal model. METHODS: We studied Trypanosoma cruzi infection in 55 Syrian hamsters that were divided into three groups: control (15), infected (20), and infected + carvedilol (20). Animals underwent echocardiography, electrocardiography, and morphometry for collagen evaluation in ventricles stained with picrosirius red. RESULTS: The left ventricular diastolic diameter did not change between groups, although it was slightly larger in infected groups, as was left ventricular systolic diameter. Fractional shortening also did not change between groups, although it was slightly lower in infected groups. Collagen accumulation in the interstitial myocardial space was significantly higher in infected groups and was not attenuated by carvedilol. The same response was observed in the perivascular space. The survival curve showed significantly better survival in the control group compared with the infected groups; but no benefit of carvedilol was observed during the study. However, in the acute phase (up to 100 days of infection), carvedilol did reduce mortality. CONCLUSION: Carvedilol did not attenuate cardiac remodeling or mortality in this model of Chagas' cardiomyopathy. The treatment did improve survival in the acute phase of the disease.
Resumo:
AIMS: Multiple arrhythmia re-inductions were recently shown in His-Purkinje system (HPS) ventricular tachycardia (VT). We hypothesized that HPS VT was a frequent mechanism of repetitive or incessant VT and assessed diagnostic criteria to select patients likely to have HPS VT. METHODS AND RESULTS: Consecutive patients with clustering VT episodes (>3 sustained monomorphic VT within 2 weeks) were included in the analysis. HPS VT was considered plausible in patients with (i) impaired left ventricular function associated with dilated cardiomyopathy or valvular heart disease; or (ii) ECG during VT similar to sinus rhythm QRS or to bundle-branch block QRS. HPS VT was plausible in 12 of 48 patients and HPS VT was demonstrated in 6 of 12 patients (50%, or 13% of the whole study group). Median VT cycle length was 318 ms (250-550). Catheter ablation was successful in all six patients. CONCLUSION: His-Purkinje system VT is found in a significant number of patients with repetitive or incessant VT episodes, and in a large proportion of patients with predefined clinical or electrocardiographic characteristics. Since it is easily amenable to catheter ablation, our data support the screening of all patients with repetitive VT in this regard and an invasive approach in a selected group of patients.
Resumo:
BACKGROUND: Myocardial contrast echocardiography (MCE) is able to measure in vivo relative blood volume (rBV, i.e., capillary density), and its exchange frequency b, the constituents of myo-cardial blood flow (MBF, ml min-1 g-1). This study aimed to assess, by MCE, whether left ventricular hypertrophy (LVH) in hypertrophic cardiomyopathy (HCM) can be differentiated from LVH in triathletes (athlete's heart, AH) or from hypertensive heart disease patients (HHD). METHODS: Sixty individuals, matched for age (33 +/- 10 years) and gender, and subdivided into four groups (n = 15) were examined: HCM, AH, HHD and a group of sedentary individuals without LVH (S). rBV (ml ml-1), b (min-1) and MBF, at rest and during adenosine-induced hyperaemia, were derived by MCE in mid septal, lateral and inferior regions. The ratio of MBF during hyperaemia and MBF at rest yielded myocardial blood flow reserve (MBFR). RESULTS: Septal wall rBV at rest was lower in HCM (0.084 +/- 0.023 ml ml-1) than in AH (0.151 +/- 0.024 ml ml-1, p <0.01) and in S (0.129 +/- 0.026 ml ml-1, p <0.01), but was similar to HHD (0.097 +/- 0.016 ml ml-1). Conversely, MBFR was lowest in HCM (1.67 +/- 0.93), followed by HHD (2.8 +/- 0.93, p <0.01), by S (3.36 +/- 1.03, p <0.001) and by AH (4.74 +/- 1.46, p <0.0001). At rest, rBV <0.11 ml ml-1 accurately distinguished between HCM and AH (sensitivity 99%, specificity 99%), similarly MBFR < or =1.8 helped to distinguish between HCM and HHD (sensitivity 100%, specificity 77%). CONCLUSIONS: rBV at rest, most accurately distinguishes between pathological LVH due to HCM and physiological, endurance-exercise induced LVH.
Resumo:
BACKGROUND: The aortomitral continuity (AMC) has been described as a site of origin for ventricular tachycardias (VT) in structurally normal hearts. There is a paucity of data on the contribution of this region to VTs in patients with structural heart disease. METHODS AND RESULTS: Data from 550 consecutive patients undergoing catheter ablation for VT associated with structural heart disease were reviewed. Twenty-one (3.8%) had a VT involving the peri-AMC region (age, 62.7+/-11 years; median left ventricular ejection fraction, 43.6+/-17%). Structural heart disease was ischemic in 7 (33%), dilated cardiomyopathy in 10 (47.6%), and valvular cardiomyopathy in 4 (19%) patients, respectively. After 1.9+/-0.8 catheter ablation procedures (including 3 transcoronary ethanol ablations) the peri-AMC VT was not inducible in 19 patients. The remaining 2 patients underwent cryosurgical ablation. Our first catheter ablation procedure was less often successful (66.7%) for peri-AMC VTs compared with that for 246 VTs originating from the LV free wall (81.4%, P=0.03). During a mean follow-up of 1.9+/-2.1 years, 12 (57.1%) patients remained free of VT, peri-AMC VT recurred in 7 patients, and 1 patient had recurrent VT from a remote location. Three patients died. Analysis of 50 normal coronary angiograms demonstrated an early septal branch supplying the peri-AMC area in 58% of cases that is a potential target for ethanol ablation. CONCLUSIONS: VTs involving the peri-AMC region occur in patients with structural heart disease and appear to be more difficult to ablate compared with VTs originating from the free LV wall. This region provides unique challenges for radiofrequency ablation, but cryosurgery and transcoronary alcohol ablation appear feasible in some cases.
Resumo:
111 Domestic Shorthair cats with idiopathic hypertrophic cardiomyopathy were reviewed retrospectively. Two-dimensional echocardiography was used to classify cases in 6 established phenotypes. Hypertrophy was diffuse in 61 % of cats and involved major portions of the ventricular septum and the left ventricular free wall (phenotype D). In the remaining cats, distribution of hypertrophy was more segmental and was identified on the papillary muscles exclusively (phenotype A, 6 %), on the anterior and basal portion of the ventricular septum (phenotype B, 12 %), on the entire septum (phenotype C, 14 %), or on the left ventricular free wall (phenotype E, 7 %). Echocardiographic characteristics and clinical findings were determined for each phenotype to study the correlation between distribution of hypertrophy and clinical implications. 31 cats demonstrated systolic anterior motion of the mitral valve, 75 % of them belonged to phenotype C of hypertrophy. Left ventricular-outflow turbulences were identified more frequently with patterns of hypertrophy involving the ventricular septum (65.5 %), while prevalence of mitral regurgitation was higher when hypertrophy included the papillary muscles (phenotypes A and E, 85 % and 87 %, respectively). Left atrial dilatation occurred more frequently when hypertrophy was diffuse or confined to the left ventricular free wall (61 % of cats with phenotype D or E) rather than to the ventricular septum (31 % of cats with phenotype B or C).
Resumo:
AIM To determine the relation between the extent and distribution of left ventricular hypertrophy and the degree of disturbance of regional relaxation and global left ventricular filling. METHODS Regional wall thickness (rWT) was measured in eight myocardial regions in 17 patients with hypertrophic cardiomyopathy, 12 patients with hypertensive heart disease, and 10 age matched normal subjects, and an asymmetry index calculated. Regional relaxation was assessed in these eight regions using regional isovolumetric relaxation time (rIVRT) and early to late peak filling velocity ratio (rE/A) derived from Doppler tissue imaging. Asynchrony of rIVRT was calculated. Doppler left ventricular filling indices were assessed using the isovolumetric relaxation time, the deceleration time of early diastolic filling (E-DT), and the E/A ratio. RESULTS There was a correlation between rWT and both rIVRT and rE/A in the two types of heart disease (hypertrophic cardiomyopathy: r = 0.47, p < 0.0001 for rIVRT; r = -0.20, p < 0.05 for rE/A; hypertensive heart disease: r = 0.21, p < 0.05 for rIVRT; r = -0.30, p = 0.003 for rE/A). The degree of left ventricular asymmetry was related to prolonged E-DT (r = 0. 50, p = 0.001) and increased asynchrony (r = 0.42, p = 0.002) in all patients combined, but not within individual groups. Asynchrony itself was associated with decreased E/A (r = -0.39, p = 0.01) and protracted E-DT (r = 0.69, p < 0.0001) and isovolumetric relaxation time (r = 0.51, p = 0.001) in all patients. These correlations were still significant for E-DT in hypertrophic cardiomyopathy (r = 0.56, p = 0.02) and hypertensive heart disease (r = 0.59, p < 0.05) and for isovolumetric relaxation time in non-obstructive hypertrophic cardiomyopathy (n = 8, r = 0.87, p = 0.005). CONCLUSIONS Non-invasive ultrasonographic examination of the left ventricle shows that in both hypertrophic cardiomyopathy and hypertensive heart disease, the local extent of left ventricular hypertrophy is associated with regional left ventricular relaxation abnormalities. Asymmetrical distribution of left ventricular hypertrophy is indirectly related to global left ventricular early filling abnormalities through regional asynchrony of left ventricular relaxation.
Resumo:
The left ventricular (LV) summit is the most common site of idiopathic epicardial LV arrhythmias and frequently represents a diagnostic and a therapeutic challenge.1 We present a case of sustained monomorphic ventricular tachycardia (SMVT) originating at the LV summit that underwent failed cryosurgical epicardial ablation and was successfully treated with the aid of merged hemodynamic and contrast-enhanced MRI (CE-MRI).
Resumo:
Increased cardiovascular mortality occurs in diabetic patients with or without coronary artery disease and is attributed to the presence of diabetic cardiomyopathy. One potential mechanism is hyperglycemia that has been reported to activate protein kinase C (PKC), preferentially the β isoform, which has been associated with the development of micro- and macrovascular pathologies in diabetes mellitus. To establish that the activation of the PKCβ isoform can cause cardiac dysfunctions, we have established lines of transgenic mice with the specific overexpression of PKCβ2 isoform in the myocardium. These mice overexpressed the PKCβ2 isoform transgene by 2- to 10-fold as measured by mRNA, and proteins exhibited left ventricular hypertrophy, cardiac myocyte necrosis, multifocal fibrosis, and decreased left ventricular performance without vascular lesions. The severity of the phenotypes exhibited gene dose-dependence. Up-regulation of mRNAs for fetal type myosin heavy chain, atrial natriuretic factor, c-fos, transforming growth factor, and collagens was also observed. Moreover, treatment with a PKCβ-specific inhibitor resulted in functional and histological improvement. These findings have firmly established that the activation of the PKCβ2 isoform can cause specific cardiac cellular and functional changes leading to cardiomyopathy of diabetic or nondiabetic etiology.
Resumo:
BACKGROUND Long-term outcomes following ventricular tachycardia (VT) ablation are sparsely described. OBJECTIVES To describe long term prognosis following VT ablation in patients with no structural heart disease (no SHD), ischemic (ICM) and non-ischemic cardiomyopathy (NICM). METHODS Consecutive patients (n=695; no SHD 98, ICM 358, NICM 239 patients) ablated for sustained VT were followed for a median of 6 years. Acute procedural parameters (complete success [non-inducibility of any VT]) and outcomes after multiple procedures were reported. RESULTS Compared with patients with no SHD or NICM, ICM patients were the oldest, had more males, lowest left ventricular ejection fraction (LVEF), highest drug failures, VT storms and number of inducible VTs. Complete procedure success was highest in no SHD, compared ICM and NICM patients (79%, 56%, 60% respectively, P<0.001). At 6 years, ventricular arrhythmia (VA)-free survival was highest in no SHD (77%) than ICM (54%) and NICM (38%, P<0.001) and overall survival was lowest in ICM (48%), followed by NICM (74%) and no SHD patients (100%, P<0.001). Age, LVEF, presence of SHD, acute procedural success (non-inducibility of any VT), major complications, need for non-radiofrequency ablation modalities, and VA recurrence were independently associated with all cause mortality. CONCLUSIONS Long term follow up following VT ablation shows excellent prognosis in the absence of SHD, highest VA recurrence and transplantation in NICM and highest mortality in patients with ICM. The extremely low mortality for those without SHD suggests that VT in this population is very rarely an initial presentation of a myopathic process.
Resumo:
The presence of a diabetic cardiomyopathy, independent of hypertension and coronary artery disease, is still controversial. This systematic review seeks to evaluate the evidence for the existence of this condition, to clarify the possible mechanisms responsible, and to consider possible therapeutic implications. The existence of a diabetic cardiomyopathy is supported by epidemiological findings showing the association of diabetes with heart failure; clinical studies confirming the association of diabetes with left ventricular dysfunction independent of hypertension, coronary artery disease, and other heart disease; and experimental evidence of myocardial structural and functional changes. The most important mechanisms of diabetic cardiomyopathy are metabolic disturbances (depletion of glucose transporter 4, increased free fatty acids, carnitine deficiency, changes in calcium homeostasis), myocardial fibrosis (association with increases in angiotensin II, IGF-I, and inflammatory cytokines), small vessel disease (microangiopathy, impaired coronary flow reserve, and endothelial dysfunction), cardiac autonomic neuropathy (denervation and alterations in myocardial catecholamine levels), and insulin resistance (hyperinsulinemia and reduced insulin sensitivity). This review presents evidence that diabetes is associated with a cardiomyopathy, independent of comorbid conditions, and that metabolic disturbances, myocardial fibrosis, small vessel disease, cardiac autonomic neuropathy, and insulin resistance may all contribute to the development of diabetic heart disease.
Resumo:
Dilated cardiomyopathy (DCM) is an etiologically heterogeneous cardiac disease characterized by left ventricular dilation and systolic dysfunction. Approximately 25-30% of DCM patients show a family history of mainly autosomal dominant inheritance. We and others have previously demonstrated that mutations in the giant muscle filament titin (TTN) can cause DCM. However, the prevalence of titin mutations in familial DCM is unknown. In this paper, we report a novel heterozygous 1-bp deletion mutation (c.62890delG) in TTN that cosegregates with DCM in a large Australian pedigree (A3). The TTN deletion mutation c.62890delG causes a frameshift, thereby generating a truncated A-band titin due to a premature stop codon (p.E20963KfsX10) and the addition of ten novel amino acid residues. The clinical phenotype of DCM in kindred A3 demonstrates incomplete penetrance and variable expressivity. Finally, protein analysis of a skeletal muscle biopsy sample from an affected member did not reveal the predicted truncated titin isoform although the aberrant mRNA was present, suggesting posttranslational modification and degradation of the truncated protein. The identification of a novel disease-causing mutation in the giant titin gene in a third large family with DCM indicates that mutations in titin may account for a significant portion of the genetic etiology in familial DCM.
Resumo:
Objective: To use quantitative myocardial contrast echocardiography (MCE) and strain rate imaging (SRI) to assess the role of microvascular disease in subclinical diabetic cardiomyopathy. Methods: Stress MCE and SRI were performed in 48 patients (22 with type II diabetes mellitus (DM) and 26 controls), all with normal left ventricular systolic function and no obstructive coronary disease by quantitative coronary angiography. Real-time MCE was acquired in three apical views at rest and after combined dipyridamole-exercise stress. Myocardial blood flow (MBF) was quantified in the 10 mid- and apical cardiac segments at rest and after stress. Resting peak systolic strain rate (SR) and peak systolic strain (epsilon) were calculated in the same 10 myocardial segments. Results: The DM and control groups were matched for age, sex and other risk factors, including hypertension. The DM group had higher body mass index and left ventricular mass index. Quantitative SRI analysis was possible in all patients and quantitative MCE in 46 (96%). The mean e, SR and MBF reserve were all significantly lower in the DM group than in controls, with diabetes the only independent predictor of each parameter. No correlation was seen between MBF and SR (r = -0.01, p = 0.54) or between MBF and epsilon ( r = -0.20, p = 0.20). Conclusions: Quantitative MCE shows that patients with diabetes but no evidence of obstructive coronary artery disease have impaired MBF reserve, but abnormal transmural flow and subclinical longitudinal myocardial dysfunction are not related.