945 resultados para lacrimal fluid
Resumo:
In this work, we present a new monolithic strategy for solving fluid-structure interaction problems involving incompressible fluids, within the context of the finite element method. This strategy, similar to the continuum dynamics, conserves certain properties, and thus provides a rational basis for the design of the time-stepping strategy; detailed proofs of the conservation of these properties are provided. The proposed algorithm works with displacement and velocity variables for the structure and fluid, respectively, and introduces no new variables to enforce velocity or traction continuity. Any existing structural dynamics algorithm can be used without change in the proposed method. Use of the exact tangent stiffness matrix ensures that the algorithm converges quadratically within each time step. An analytical solution is presented for one of the benchmark problems used in the literature, namely, the piston problem. A number of benchmark problems including problems involving free surfaces such as sloshing and the breaking dam problem are used to demonstrate the good performance of the proposed method. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The pulsatile flow of an incompressible viscous fluid in an elliptical pipe of slowly varying cross-section is considered. Asymptotic series solutions for the velocity distribution and pressure gradient are obtained in terms of Mathieu functions for a low Reynold number flow in which the volume flux is prescribed. An expression for shear stress on the boundary is derived. The physically significant quantities governing the flow are computed numerically and analysed for different types of constrictions. The effect of eccentricity and Womerslay parameter on the flow is discussed.
Resumo:
We carry out a direct numerical simulation (DNS) study that reveals the effects of polymers on statistically steady, forced, homogeneous, and isotropic fluid turbulence. We find clear manifestations of dissipation-reduction phenomena: on the addition of polymers to the turbulent fluid, we obtain a reduction in the energy dissipation rate; a significant modification of the fluid-energy spectrum, especially in the deep-dissipation range; and signatures of the suppression of small-scale structures, including a decrease in small-scale vorticity filaments. We also compare our results with recent experiments and earlier DNS studies of decaying fluid turbulence with polymer additives.
Resumo:
We have consider ed the transient motion of art electrically conducting viscous compressible fluid which is in contact with an insulated infinite disk. The initial motion is considered to be due to the uniform rotation of the disk in an otherwise stationary fluid or due to the uniform rigid rotation of the fluid over a stationary disk. Different cases of transient motion due to finite impulse imparted either to the disk or to the distant fluid have been investigated. Effects of the imposed axial magnetic field and the disk temperature on the transient flow are included. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite-difference scheme along with the Newton's linearisation technique.
Resumo:
A method involving eigenfunction expansion and collocation is employed to solve the axisymmetric problem of a slowly and steadily rotating circular disc in a fluid of finite extent whose surface is covered with a surfactant film. The present method (originally described by Wang (Acta Mech. 94, 97, 1992)) is observed to produce results of practical importance associated with the problem more quickly and more easily than the one used earlier by Shail and Gooden (Int. J. Multiphase Flow 7, 245, 1992). (C) 1994 Academic Press, Inc.
Resumo:
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter Lambda to distinguish between vortical and extensional regions. We then use a direct numerical simulation of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent theta = 2.9 +/- 0.2.
Resumo:
Reaction between the various species in slag and metal phase is usually mass transfer controlled. There have been continuous efforts to increase the reaction efficiency in slag-metal system, especially during decarburization of steel to produce the ultra low carbon steel (ULCS) in secondary steelmaking. It has been found that the surface reaction is a dominant factor in the final stage of decarburization. In the initial stage, the inner site reaction is major factor in the refining process. The mixing of bath affects the later reaction. However, the former reaction (surface reaction) is affected by the plume size area at the top of the metal surface. Therefore, a computational study has been made to understand the fluid dynamics of a new secondary steelmaking process called Revolutionary Degasser Activator (REDA) to study the bath mixing and plume area. REDA process has been considered as it is claimed that this process can reduce the carbon content in steel below 10ppm in a less time than the other existing processes such as RH and Tank degasser. This study shows that both bath mixing and plume area are increased in REDA process facilitating it to give the desired carbon content in less time. Qualitative comments are made on slag-metal reaction system based on this finding.
Resumo:
Wave propagation in fluid?filled/submerged tubes is of interest in large HVAC ducts, and also in understanding and interpreting the experimental results obtained from fluid?filled impedance tubes. Based on the closed form analytical solution of the coupled wave equations, an eigenequation, which is the determinant of an 8×8 matrix, is derived and solved to obtain the axial wave number of the lowest?order longitudinal modes for cylindrical ducts of various diameter and wall thickness. The dispersion behavior of the wave motion is analyzed. It is observed that the larger the diameter of the duct and/or the smaller its wall thickness, the more flexible the impedance tube leading to more coupling between the waves in the elastic media. Also, it is shown that the wave motion in water?filled ducts submerged in water exhibits anomalous dispersion behavior. The axial attenuation characteristics of plane waves along water?filled tubes submerged in water or air are also investigated. Finally, investigations on the sound intensity level difference characteristics of the wall of the air?filled tubes are reported.
Resumo:
In this work, an attempt is made to gain a better understanding of the breakage of low-viscosity drops in turbulent flows by determining the dynamics of deformation of an inviscid drop in response to a pressure variation acting on the drop surface. Known scaling relationships between wavenumbers and frequencies, and between pressure fluctuations and velocity fluctuations in the inertial subrange are used in characterizing the pressure fluctuation. The existence of a maximum stable drop diameter d(max) follows once scaling laws of turbulent flow are used to correlate the magnitude of the disruptive forces with the duration for which they act. Two undetermined dimensionless quantities, both of order unity, appear in the equations of continuity, motion, and the boundary conditions in terms of pressure fluctuations applied on the surface. One is a constant of proportionality relating root-mean-square values of pressure and velocity differences between two points separated by a distance l. The other is a Weber number based on turbulent stresses acting on the drop and the resisting stresses in the drop due to interfacial tension. The former is set equal to 1, and the latter is determined by studying the interaction of a drop of diameter equal to d(max) with a pressure fluctuation of length scale equal to the drop diameter. The model is then used to study the breakage of drops of diameter greater than d(max) and those with densities different from that of the suspending fluid. It is found that, at least during breakage of a drop of diameter greater than d(max) by interaction with a fluctuation of equal length scale, a satellite drop is always formed between two larger drops. When very large drops are broken by smaller-length-scale fluctuations, highly deformed shapes are produced suggesting the possibility of further fragmentation due to instabilities. The model predicts that as the dispersed-phase density increases, d(max) decreases.
Resumo:
A specific protein exhibiting immunological cross-reactivity with chicken riboflavin carrier protein has been purified to homogeneity from human amniotic fluid by use of ion-exchange and affinity chromatography. The protein is similar to its avian counterpart in terms of molecular size, distribution of 125I-labelled tryptic peptides during finger printing, and preferential binding to riboflavin. Immunologically, they are homologous since most of the monoclonal antibodies raised against the avian protein cross-react with the purified human vitamin carrier.
Resumo:
Natural convection from an isothermal vertical surface to a thermally stratified fluid is studied numerically. A wide range of stratification levels is considered. It is shown that at high levels of ambient thermal stratification, a portion at the top of the plate absorbs heat, while a horizontal plume forms around a location where the plate temperature equals the ambient temperature. The plume is shown to be inherently unsteady, and its transient nature is investigated in detail. The effect of the temperature defect in striating the plume is discussed. Average Nusselt number data are presented for Pr = 6.0 and 0.7.
Resumo:
Utilising Jones' method associated with the Wiener-Hopf technique, explicit solutions are obtained for the temperature distributions on the surface of a cylindrical rod without an insulated core as well as that inside a cylindrical rod with an insulated inner core when the rod, in either of the two cases, is allowed to enter, with a uniform speed, into two different layers of fluid with different cooling abilities. Simple expressions are derived for the values of the sputtering temperatures of the rod at the points of entry into the respective layers, assuming the upper layer of the fluid to be of finite depth and the lower of infinite extent. Both the problems are solved through a three-part Wiener-Hopf problem of special type and the numerical results under certain special circumstances are obtained and presented in tabular forms.
Resumo:
The modification of the axisymmetric viscous flow due to relative rotation of the disk or fluid by a translation of the boundary is studied. The fluid is taken to be compressible, and the relative rotation and translation velocity of the disk or fluid are time-dependent. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite difference scheme and Newton's linearisation technique. Numerical solutions are obtained at various non-dimensional times and disk temperatures. The non-symmetric part of the flow (secondary flow) describing the translation effect generates a velocity field at each plane parallel to the disk. The cartesian components of velocity due to secondary flow exhibit oscillations when the motion is due to rotation of the fluid on a translating disk. Increase in translation velocity produces an increment in the radial skin friction but reduces the tangential skin friction.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube
Resumo:
The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.