970 resultados para kinetic-energy
Resumo:
Apart from one article published by Rabl and Sigrist in 1992 (Rechtsmedizin 2:156-158), there are no further reports on secondary skull fractures in shots from captive bolt guns. Up to now, the pertinent literature places particular emphasis on the absence of indirect lesions away from the impact point, when dealing with the wounding capacity of slaughterer's guns. The recent observation of two suicidal head injuries accompanied by skull fractures far away from the bolt's path gave occasion to experimental studies using simulants (glycerin soap, balls from gelatin) and skull brain models. As far as ballistic soap was concerned, the dimensions of the bolt's channel were assessed by multi-slice computed tomography before cutting the blocks open. The test shots to gelatin balls and to skull-brain models were documented by means of a high-speed motion camera. As expected, the typical temporary cavity effect of bullets fired from conventional guns could not be observed when captive bolt stunners were discharged. Nevertheless, the visualized transfer of kinetic energy justifies the assumption that the secondary fractures seen in thin parts of the skull were caused by a hydraulic burst effect.
Resumo:
Eye injuries are a large societal problem in both the military and civilian sectors. Eye injury rates are increasing in recent military conflicts, and there are over 1.9 million eye injuries in the United States civilian sector annually. In order to develop a better understanding of eye injury risk, several previous studies have developed eye injury criteria based on projectile characteristics. While these injury criteria have been used to estimate eye injury potential of impact scenarios, they require that the mass, size and velocity of the projectile are known. It is desirable to develop a method to assess the severity of an eye impact in environments where it would be difficult or impossible to determine these projectile characteristics. The current study presents a measurement technique for monitoring intraocular pressure of the eye under impactloading. Through experimental tests with a custom pressure chamber, a subminiature pressure transducer was validated to be thermally stable and suitable for testing in an impact environment.Once validated, the transducer was utilized intraocularly, inserted through the optic nerve, to measure the pressure of the eye during blunt-projectile impacts. A total of 150 impact tests were performed using projectiles ranging from 3.2 mm to 17.5 mm in diameter. Investigation of the relationship between projectile energy and intraocular pressure lead to the identification of at least two distinct trends. Intraocular pressure and normalized energy measurements indicated a different response for penetrating-type globe rupture injuries with smaller diameter (d < 1 cm)projectiles, and blunt-type globe rupture injuries with larger diameter (d > 1 cm) projectiles. Furthermore, regression analysis indicates that relationships exist between intraocular pressureand projectile energy that may allow quantification of eye injury risk based on pressure data, and also that intraocular pressure measurements of impact may lead to a better understanding of thetransition between penetrating and blunt globe rupture injury mechanisms.
Resumo:
A basic understanding of the ballistic behaviour of projectiles or fragments after entering the human body is essential for the head and neck surgeon in the military environment in order to anticipate the diagnostic and therapeutic consequences of this type of injury. Although a large number of factors influence the missile in flight and after penetration of the body, the most important factor is the amount of energy transmitted to the tissue. Long guns (rifles or shotguns) have a much higher muzzle energy compared to handguns, explaining why the remote effects beyond the bullet track play a major role. While most full metal jacket bullets release their energy after 12-20 cm (depending on the calibre), soft point bullets release their energy immediately after entry into the human body. This results in a major difference in extremity wounds, but not so much in injuries with long bullet paths (e.g. diagonal shots). Shrapnel wounds are usually produced with similarly high kinetic energy to those caused by hand- and long guns. However, fragments tend to dissipate the entire amount of energy within the body, which increases the degree of tissue disruption. Of all relevant injuries in the head and neck region, soft tissue injuries make up the largest proportion (60%), while injuries to the face are seen three times more often than injuries to the neck. Concomitant intracranial or spinal injury is seen in 30% of cases. Due to high levels of wound contamination, the infection rate is approximately 15%, often associated with a complicated and/or multiresistant spectrum of germs.
Resumo:
Excitation of tert-butylnitrite into the first and second UV absorption bands leads to efficient dissociation into the fragment radicals NO and tert-butoxy in their electronic ground states (2)Π and (2)E, respectively. Velocity distributions and angular anisotropies for the NO fragment in several hundred rotational and vibrational quantum states were obtained by velocity-map imaging and the recently developed 3D-REMPI method. Excitation into the well resolved vibronic progression bands (k = 0, 1, 2) of the NO stretch mode in the S(1) ← S(0) transition produces NO fragments mostly in the vibrational state with v = k, with smaller fractions in v = k - 1 and v = k - 2. It is concluded that dissociation occurs on the purely repulsive PES of S(1) without barrier. All velocity distributions from photolysis via the S(1)(nπ*) state are monomodal and show high negative anisotropy (β ≈ -1). The rotational distributions peak near j = 30.5 irrespective of the vibronic state S(1)(k) excited and the vibrational state v of the NO fragment. On average 46% of the excess energy is converted to kinetic energy, 23% and 31% remain as internal energy in the NO fragment and the t-BuO radical, respectively. Photolysis via excitation into the S(2) ← S(0) transition at 227 nm yields NO fragments with about equal populations in v = 0 and v = 1. The rotational distributions have a single maximum near j = 59.5. The velocity distributions are monomodal with positive anisotropy β ≈ 0.8. The average fractions of the excess energy distributed into translation, internal energy of NO, and internal energy of t-BuO are 39%, 23%, and 38%, respectively. In all cases ∼8500 cm(-1) of energy remain in the internal degrees of freedom of the t-BuO fragment. This is mostly assigned to rotational energy. An ab initio calculation of the dynamic reaction path shows that not only the NO fragment but also the t-BuO fragment gain large angular momentum during dissociation on the purely repulsive potential energy surface of S(2).
Resumo:
The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.
Resumo:
The dissertation titled "Driver Safety in Far-side and Far-oblique Crashes" presents a novel approach to assessing vehicle cockpit safety by integrating Human Factors and Applied Mechanics. The methodology of this approach is aimed at improving safety in compact mobile workspaces such as patrol vehicle cockpits. A statistical analysis performed using Michigan state's traffic crash data to assess various contributing factors that affect the risk of severe driver injuries showed that the risk was greater for unrestrained drivers (OR=3.38, p<0.0001) and for incidents involving front and far-side crashes without seatbelts (OR=8.0 and 23.0 respectively, p<0.005). Statistics also showed that near-side and far-side crashes pose similar threat to driver injury severity. A Human Factor survey was conducted to assess various Human-Machine/Human-Computer Interaction aspects in patrol vehicle cockpits. Results showed that tasks requiring manual operation, especially the usage of laptop, would require more attention and potentially cause more distraction. A vehicle survey conducted to evaluate ergonomics-related issues revealed that some of the equipment was in airbag deployment zones. In addition, experiments were conducted to assess the effects on driver distraction caused by changing the position of in-car accessories. A driving simulator study was conducted to mimic HMI/HCI in a patrol vehicle cockpit (20 subjects, average driving experience = 5.35 years, s.d. = 1.8). It was found that the mounting locations of manual tasks did not result in a significant change in response times. Visual displays resulted in response times less than 1.5sec. It can also be concluded that the manual task was equally distracting regardless of mounting positions (average response time was 15 secs). Average speeds and lane deviations did not show any significant results. Data from 13 full-scale sled tests conducted to simulate far-side impacts at 70 PDOF and 40 PDOF was used to analyze head injuries and HIC/AIS values. It was found that accelerations generated by the vehicle deceleration alone were high enough to cause AIS 3 - AIS 6 injuries. Pretensioners could mitigated injuries only in 40 PDOF (oblique) impacts but are useless in 70 PDOF impacts. Seat belts were ineffective in protecting the driver's head from injuries. Head would come in contact with the laptop during a far-oblique (40 PDOF) crash and far-side door for an angle-type crash (70 PDOF). Finite Element analysis head-laptop impact interaction showed that the contact velocity was the most crucial factor in causing a severe (and potentially fatal) head injury. Results indicate that no equipment may be mounted in driver trajectory envelopes. A very narrow band of space is left in patrol vehicles for installation of manual-task equipment to be both safe and ergonomic. In case of a contact, the material stiffness and damping properties play a very significant role in determining the injury outcome. Future work may be done on improving the interiors' material properties to better absorb and dissipate kinetic energy of the head. The design of seat belts and pretensioners may also be seen as an essential aspect to be further improved.
Resumo:
In recent years, considerable thought and study have been given to the use of chromized articles in place of chromium stainless steel articles. The present extensive application of chromizing, indeed, helps greatly to conserve this valuable metal.
Resumo:
The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.
Resumo:
This dataset present result from the DFG- funded Arctic-Turbulence-Experiment (ARCTEX-2006) performed by the University of Bayreuth on the island of Svalbard, Norway, during the winter/spring transition 2006. From May 5 to May 19, 2006 turbulent flux and meteorological measurements were performed on the monitoring field near Ny-Ålesund, at 78°55'24'' N, 11°55'15'' E Kongsfjord, Svalbard (Spitsbergen), Norway. The ARCTEX-2006 campaign site was located about 200 m southeast of the settlement on flat snow covered tundra, 11 m to 14 m above sea level. The permanent sites used for this study consisted of the 10 m meteorological tower of the Alfred Wegener Institute for Polar- and Marine Research (AWI), the international standardized radiation measurement site of the Baseline Surface Radiation Network (BSRN), the radiosonde launch site and the AWI tethered balloon launch sites. The temporary sites - set up by the University of Bayreuth - were a 6 m meteorological gradient tower, an eddy-flux measurement complex (EF), and a laser-scintillometer section (SLS). A quality assessment and data correction was applied to detect and eliminate specific measurement errors common at a high arctic landscape. In addition, the quality checked sensible heat flux measurements are compared with bulk aerodynamic formulas that are widely used in atmosphere-ocean/land-ice models for polar regions as described in Ebert and Curry (1993, doi:10.1029/93JC00656) and Launiainen and Cheng (1995). These parameterization approaches easily allow estimation of the turbulent surface fluxes from routine meteorological measurements. The data show: - the role of the intermittency of the turbulent atmospheric fluctuation of momentum and scalars, - the existence of a disturbed vertical temperature profile (sharp inversion layer) close to the surface, - the relevance of possible free convection events for the snow or ice melt in the Arctic spring at Svalbard, and - the relevance of meso-scale atmospheric circulation pattern and air-mass advection for the near-surface turbulent heat exchange in the Arctic spring at Svalbard. Recommendations and improvements regarding the interpretation of eddy-flux and laser-scintillometer data as well as the arrangement of the instrumentation under polar distinct exchange conditions and (extreme) weather situations could be derived.
Resumo:
Globalization as progress of economic development has increased population socioeconomical vulnerability when unequal wealth distribution within economic development process constitutes the main rule, with widening the gap between rich and poors by environmental pricing. Econological vulnerability is therefore increasing too, as dangerous substance and techniques should produce polluted effluents and industrial or climatic risk increasing (Woloszyn, Quenault, Faburel, 2012). To illustrate and model this process, we propose to introduce an analogical induction-model to describe both vulnerability situations and associated resilience procedures. At this aim, we first develop a well-known late 80?s model of socio-economic crack-up, known as 'Silent Weapons for Quiet Wars', which presents economics as a social extension of natural energy systems. This last, also named 'E-model', is constituted by three passive components, potential energy, kinetic energy, and energy dissipation, thus allowing economical data to be treated as a thermodynamical system. To extend this model to social and ecological sustainability pillars, we propose to built an extended E(Economic)-S(Social)-O(Organic) model, based on the three previous components, as an open model considering feedbacks as evolution sources. An applicative illustration of this model will then be described, through this summer's american severe drought event analysis
Resumo:
Globalization as progress of economic development has increased population socioeconomical vulnerability when unequal wealth distribution within economic development process constitutes the main rule, with widening the gap between rich and poors by environmental pricing. Econological vulnerability is therefore increasing too, as dangerous substance and techniques should produce polluted effluents and industrial or climatic risk increasing (Woloszyn, Quenault, Faburel, 2012). To illustrate and model this process, we propose to introduce an analogical induction-model to describe both vulnerability situations and associated resilience procedures. At this aim, we first develop a well-known late 80?s model of socio-economic crack-up, known as 'Silent Weapons for Quiet Wars', which presents economics as a social extension of natural energy systems. This last, also named 'E-model', is constituted by three passive components, potential energy, kinetic energy, and energy dissipation, thus allowing economical data to be treated as a thermodynamical system. To extend this model to social and ecological sustainability pillars, we propose to built an extended E(Economic)-S(Social)-O(Organic) model, based on the three previous components, as an open model considering feedbacks as evolution sources. An applicative illustration of this model will then be described, through this summer's american severe drought event analysis
Resumo:
Globalization as progress of economic development has increased population socioeconomical vulnerability when unequal wealth distribution within economic development process constitutes the main rule, with widening the gap between rich and poors by environmental pricing. Econological vulnerability is therefore increasing too, as dangerous substance and techniques should produce polluted effluents and industrial or climatic risk increasing (Woloszyn, Quenault, Faburel, 2012). To illustrate and model this process, we propose to introduce an analogical induction-model to describe both vulnerability situations and associated resilience procedures. At this aim, we first develop a well-known late 80?s model of socio-economic crack-up, known as 'Silent Weapons for Quiet Wars', which presents economics as a social extension of natural energy systems. This last, also named 'E-model', is constituted by three passive components, potential energy, kinetic energy, and energy dissipation, thus allowing economical data to be treated as a thermodynamical system. To extend this model to social and ecological sustainability pillars, we propose to built an extended E(Economic)-S(Social)-O(Organic) model, based on the three previous components, as an open model considering feedbacks as evolution sources. An applicative illustration of this model will then be described, through this summer's american severe drought event analysis